Skip to content

Conversation

@ooples
Copy link
Owner

@ooples ooples commented Nov 10, 2025

User Story / Context

  • Reference: [US-XXX] (if applicable)
  • Base branch: merge-dev2-to-master

Summary

  • What changed and why (scoped strictly to the user story / PR intent)

Verification

  • Builds succeed (scoped to changed projects)
  • Unit tests pass locally
  • Code coverage >= 90% for touched code
  • Codecov upload succeeded (if token configured)
  • TFM verification (net46, net6.0, net8.0) passes (if packaging)
  • No unresolved Copilot comments on HEAD

Copilot Review Loop (Outcome-Based)

Record counts before/after your last push:

  • Comments on HEAD BEFORE: [N]
  • Comments on HEAD AFTER (60s): [M]
  • Final HEAD SHA: [sha]

Files Modified

  • List files changed (must align with scope)

Notes

  • Any follow-ups, caveats, or migration details

…prehensive coverage areas (Interpolation, Wavelets, WindowFunctions, RBF)
…bility, and OutlierRemoval

- FitDetectorsBenchmarks.cs: 20 benchmarks for overfitting/underfitting detection
  * Default, CrossValidation, Adaptive, Ensemble detectors
  * Residual-based: ResidualAnalysis, ResidualBootstrap, Autocorrelation
  * Statistical: InformationCriteria, GaussianProcess, CookDistance, VIF
  * Resampling: Bootstrap, Jackknife, TimeSeriesCrossValidation
  * Feature analysis: FeatureImportance, PartialDependencePlot, ShapleyValue, LearningCurve
  * Classification: ROCCurve, PrecisionRecallCurve

- FitnessCalculatorsBenchmarks.cs: 27 benchmarks for model evaluation
  * Error-based: MSE, RMSE, MAE, Huber, ModifiedHuber, LogCosh, Quantile
  * R-squared: RSquared, AdjustedRSquared
  * Classification: CrossEntropy, BinaryCrossEntropy, CategoricalCrossEntropy,
    WeightedCrossEntropy, Hinge, SquaredHinge, Focal
  * Specialized: KL-Divergence, ElasticNet, Poisson, Exponential, OrdinalRegression
  * Similarity: Jaccard, Dice, CosineSimilarity, Contrastive, Triplet

- InterpretabilityBenchmarks.cs: 16 benchmarks for model explainability
  * Fairness evaluators: Basic, Group, Comprehensive
  * Bias detectors: DemographicParity, DisparateImpact, EqualOpportunity
  * Explanation structures: LIME, Anchor, Counterfactual
  * Helper metrics: UniqueGroups, GroupIndices, PositiveRate, TPR, FPR, Precision

- OutlierRemovalBenchmarks.cs: 16 benchmarks for outlier detection
  * Algorithms: None, ZScore, IQR, MAD, Threshold
  * Both Matrix and Tensor support
  * Different threshold configurations (strict/lenient)
- CachingBenchmarks.cs: 12 benchmarks for caching performance
  * ModelCache operations: CacheStepData, GetCachedStepData, ClearCache, GenerateCacheKey
  * GradientCache operations: CacheGradient, GetCachedGradient, ClearCache
  * DeterministicCacheKeyGenerator: GenerateKey with/without parameters, CreateInputDataDescriptor
  * Cache hit/miss patterns for both ModelCache and GradientCache
  * Tests concurrent access patterns and key generation performance

- SerializationBenchmarks.cs: 17 benchmarks for JSON serialization
  * Matrix serialization: Serialize, Deserialize, RoundTrip
  * Vector serialization: Serialize, Deserialize, RoundTrip
  * Tensor 2D serialization: Serialize, Deserialize, RoundTrip
  * Tensor 3D serialization: Serialize, Deserialize, RoundTrip
  * JsonConverterRegistry: RegisterCustomConverters
  * Multiple objects: Serialize and deserialize multiple objects at once
  * Float vs Double: Performance comparison for different numeric types
- TransferLearningBenchmarks.cs: 16 benchmarks for transfer learning
  * Domain Adaptation: CORAL, MMD (with RBF, Linear, Polynomial kernels)
  * Feature Mapping: LinearFeatureMapper (Fit, Transform, FitTransform)
  * Transfer Algorithms: TransferNeuralNetwork and TransferRandomForest
    - Training, fine-tuning, and prediction benchmarks
  * End-to-End Scenarios: CORAL+NN, MMD+RF, LinearMapping+NN pipelines

- BENCHMARK_SUMMARY.md: Updated with complete statistics
  * Total: 39 files, 607 benchmarks (up from 32 files, 483 benchmarks)
  * Coverage: 53+ feature areas (up from 47+)
  * New sections added for all 7 new benchmark categories
  * Updated performance comparison matrix
  * Added "Latest Additions" section documenting all new benchmarks
  * Updated benchmark execution examples

New Feature Areas Covered:
31. FitDetectors (20 types) - Overfitting/underfitting detection
32. FitnessCalculators (26+ types) - Model evaluation metrics
33. Interpretability - Fairness, bias detection, explainability
34. OutlierRemoval (5 algorithms) - Data cleaning
35. Caching - ModelCache, GradientCache, key generation
36. Serialization - Matrix, Vector, Tensor JSON performance
37. TransferLearning - Domain adaptation, feature mapping, algorithms

Status: 100% benchmark coverage achieved across all 53+ feature areas
Copilot AI review requested due to automatic review settings November 10, 2025 19:26
@coderabbitai
Copy link
Contributor

coderabbitai bot commented Nov 10, 2025

Warning

Rate limit exceeded

@ooples has exceeded the limit for the number of commits or files that can be reviewed per hour. Please wait 22 minutes and 11 seconds before requesting another review.

⌛ How to resolve this issue?

After the wait time has elapsed, a review can be triggered using the @coderabbitai review command as a PR comment. Alternatively, push new commits to this PR.

We recommend that you space out your commits to avoid hitting the rate limit.

🚦 How do rate limits work?

CodeRabbit enforces hourly rate limits for each developer per organization.

Our paid plans have higher rate limits than the trial, open-source and free plans. In all cases, we re-allow further reviews after a brief timeout.

Please see our FAQ for further information.

📥 Commits

Reviewing files that changed from the base of the PR and between d2f4ef6 and 92e5001.

📒 Files selected for processing (41)
  • AiDotNetBenchmarkTests/AiDotNetBenchmarkTests.csproj (1 hunks)
  • AiDotNetBenchmarkTests/BENCHMARK_SUMMARY.md (1 hunks)
  • AiDotNetBenchmarkTests/BenchmarkTests/ActivationFunctionsBenchmarks.cs (1 hunks)
  • AiDotNetBenchmarkTests/BenchmarkTests/AllActivationFunctionsBenchmarks.cs (1 hunks)
  • AiDotNetBenchmarkTests/BenchmarkTests/AllOptimizersBenchmarks.cs (1 hunks)
  • AiDotNetBenchmarkTests/BenchmarkTests/AllRegressionModelsBenchmarks_Part1.cs (1 hunks)
  • AiDotNetBenchmarkTests/BenchmarkTests/AllRegressionModelsBenchmarks_Part2.cs (1 hunks)
  • AiDotNetBenchmarkTests/BenchmarkTests/AutoMLBenchmarks.cs (1 hunks)
  • AiDotNetBenchmarkTests/BenchmarkTests/CachingBenchmarks.cs (1 hunks)
  • AiDotNetBenchmarkTests/BenchmarkTests/ComprehensiveCoverageBenchmarks.cs (1 hunks)
  • AiDotNetBenchmarkTests/BenchmarkTests/CrossValidationBenchmarks.cs (1 hunks)
  • AiDotNetBenchmarkTests/BenchmarkTests/DataPreprocessingBenchmarks.cs (1 hunks)
  • AiDotNetBenchmarkTests/BenchmarkTests/FeatureSelectorsBenchmarks.cs (1 hunks)
  • AiDotNetBenchmarkTests/BenchmarkTests/FitDetectorsBenchmarks.cs (1 hunks)
  • AiDotNetBenchmarkTests/BenchmarkTests/FitnessCalculatorsBenchmarks.cs (1 hunks)
  • AiDotNetBenchmarkTests/BenchmarkTests/GaussianProcessesBenchmarks.cs (1 hunks)
  • AiDotNetBenchmarkTests/BenchmarkTests/GeneticAlgorithmsBenchmarks.cs (1 hunks)
  • AiDotNetBenchmarkTests/BenchmarkTests/InternalComparisonBenchmarks.cs (1 hunks)
  • AiDotNetBenchmarkTests/BenchmarkTests/InterpretabilityBenchmarks.cs (1 hunks)
  • AiDotNetBenchmarkTests/BenchmarkTests/KernelMethodsBenchmarks.cs (1 hunks)
  • AiDotNetBenchmarkTests/BenchmarkTests/LoRABenchmarks.cs (1 hunks)
  • AiDotNetBenchmarkTests/BenchmarkTests/LossFunctionsBenchmarks.cs (1 hunks)
  • AiDotNetBenchmarkTests/BenchmarkTests/MatrixDecompositionBenchmarks.cs (1 hunks)
  • AiDotNetBenchmarkTests/BenchmarkTests/MatrixOperationsBenchmarks.cs (1 hunks)
  • AiDotNetBenchmarkTests/BenchmarkTests/MetaLearningBenchmarks.cs (1 hunks)
  • AiDotNetBenchmarkTests/BenchmarkTests/NeuralNetworkArchitecturesBenchmarks.cs (1 hunks)
  • AiDotNetBenchmarkTests/BenchmarkTests/NeuralNetworkLayersBenchmarks.cs (1 hunks)
  • AiDotNetBenchmarkTests/BenchmarkTests/NormalizersBenchmarks.cs (1 hunks)
  • AiDotNetBenchmarkTests/BenchmarkTests/OptimizersBenchmarks.cs (1 hunks)
  • AiDotNetBenchmarkTests/BenchmarkTests/OutlierRemovalBenchmarks.cs (1 hunks)
  • AiDotNetBenchmarkTests/BenchmarkTests/RAGBenchmarks.cs (1 hunks)
  • AiDotNetBenchmarkTests/BenchmarkTests/RegressionBenchmarks.cs (1 hunks)
  • AiDotNetBenchmarkTests/BenchmarkTests/RegularizationBenchmarks.cs (1 hunks)
  • AiDotNetBenchmarkTests/BenchmarkTests/SerializationBenchmarks.cs (1 hunks)
  • AiDotNetBenchmarkTests/BenchmarkTests/StatisticsBenchmarks.cs (1 hunks)
  • AiDotNetBenchmarkTests/BenchmarkTests/TensorFlowComparisonBenchmarks.cs (1 hunks)
  • AiDotNetBenchmarkTests/BenchmarkTests/TensorOperationsBenchmarks.cs (1 hunks)
  • AiDotNetBenchmarkTests/BenchmarkTests/TimeSeriesBenchmarks.cs (1 hunks)
  • AiDotNetBenchmarkTests/BenchmarkTests/TransferLearningBenchmarks.cs (1 hunks)
  • AiDotNetBenchmarkTests/BenchmarkTests/VectorOperationsBenchmarks.cs (1 hunks)
  • AiDotNetBenchmarkTests/Program.cs (1 hunks)
✨ Finishing touches
  • 📝 Generate docstrings
🧪 Generate unit tests (beta)
  • Create PR with unit tests
  • Post copyable unit tests in a comment
  • Commit unit tests in branch claude/add-benchmarks-011CUzfqaqetfMBMBXnDCTEf

Thanks for using CodeRabbit! It's free for OSS, and your support helps us grow. If you like it, consider giving us a shout-out.

❤️ Share

Comment @coderabbitai help to get the list of available commands and usage tips.

Copy link
Contributor

Copilot AI left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Pull Request Overview

This PR adds a comprehensive benchmark suite for the AiDotNet library, providing extensive performance testing infrastructure. The benchmarks cover 53+ feature areas with 607 benchmark methods across 39 files, enabling performance monitoring, regression detection, and competitive analysis against Accord.NET, ML.NET, and TensorFlow.NET.

Key Changes:

  • Added BenchmarkSwitcher to Program.cs for flexible benchmark execution with command-line filtering
  • Implemented 39 benchmark files covering all major AiDotNet features (LinearAlgebra, Statistics, Regression, Neural Networks, Optimizers, Activation Functions, Loss Functions, etc.)
  • Added competitor library dependencies (Accord.NET, ML.NET, TensorFlow.NET) for comparative benchmarking
  • Created comprehensive documentation in BENCHMARK_SUMMARY.md detailing all 607 benchmarks

Reviewed Changes

Copilot reviewed 41 out of 41 changed files in this pull request and generated 17 comments.

File Description
Program.cs Updated to use BenchmarkSwitcher for command-line benchmark selection
AiDotNetBenchmarkTests.csproj Added competitor library dependencies for benchmarking comparisons
BENCHMARK_SUMMARY.md Comprehensive documentation of all 607 benchmarks across 53+ feature areas
VectorOperationsBenchmarks.cs (and 38 other benchmark files) New benchmark implementations covering all major library features

💡 Add Copilot custom instructions for smarter, more guided reviews. Learn how to get started.

Comment on lines +111 to +117
foreach (var doc in retrievedDocs)
{
if (relevantDocs.Contains(doc))
{
correct++;
}
}
Copy link

Copilot AI Nov 10, 2025

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This foreach loop implicitly filters its target sequence - consider filtering the sequence explicitly using '.Where(...)'.

Copilot uses AI. Check for mistakes.
{
x[i] = _aiTrainX[i, 0];
}
model.Regress(x, _accordTrainY);
Copy link

Copilot AI Nov 10, 2025

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Call to obsolete method Regress.

Copilot uses AI. Check for mistakes.
public MultipleLinearRegression AccordNet_MultipleRegression_Train()
{
var model = new MultipleLinearRegression();
model.Regress(_accordTrainX, _accordTrainY);
Copy link

Copilot AI Nov 10, 2025

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Call to obsolete method Regress.

Copilot uses AI. Check for mistakes.
public double[] AccordNet_MultipleRegression_Predict()
{
var model = new MultipleLinearRegression();
model.Regress(_accordTrainX, _accordTrainY);
Copy link

Copilot AI Nov 10, 2025

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Call to obsolete method Regress.

Copilot uses AI. Check for mistakes.
x[i] = _aiTrainX[i, 0];
}
var model = new PolynomialRegression(degree: 2);
model.Regress(x, _accordTrainY);
Copy link

Copilot AI Nov 10, 2025

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Call to obsolete method Regress.

Copilot uses AI. Check for mistakes.
[GlobalSetup]
public void Setup()
{
var random = new Random(42);
Copy link

Copilot AI Nov 10, 2025

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This assignment to random is useless, since its value is never read.

Copilot uses AI. Check for mistakes.
Comment on lines +48 to +55
if (random.NextDouble() < 0.1)
{
_dataWithMissing[i, j] = double.NaN;
}
else
{
_dataWithMissing[i, j] = value;
}
Copy link

Copilot AI Nov 10, 2025

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Both branches of this 'if' statement write to the same variable - consider using '?' to express intent better.

Suggested change
if (random.NextDouble() < 0.1)
{
_dataWithMissing[i, j] = double.NaN;
}
else
{
_dataWithMissing[i, j] = value;
}
_dataWithMissing[i, j] = (random.NextDouble() < 0.1) ? double.NaN : value;

Copilot uses AI. Check for mistakes.
Comment on lines +58 to +65
if (random.NextDouble() < 0.05)
{
_dataWithOutliers[i, j] = value * 10; // Extreme outlier
}
else
{
_dataWithOutliers[i, j] = value;
}
Copy link

Copilot AI Nov 10, 2025

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Both branches of this 'if' statement write to the same variable - consider using '?' to express intent better.

Suggested change
if (random.NextDouble() < 0.05)
{
_dataWithOutliers[i, j] = value * 10; // Extreme outlier
}
else
{
_dataWithOutliers[i, j] = value;
}
_dataWithOutliers[i, j] = (random.NextDouble() < 0.05) ? value * 10 : value; // Extreme outlier

Copilot uses AI. Check for mistakes.
Comment on lines +43 to +60
if (random.NextDouble() < 0.05) // 5% outliers
{
_inputs[i, j] = random.NextDouble() * 100; // Large outlier
}
else
{
_inputs[i, j] = random.NextDouble() * 2 - 1; // Normal data
}
}

if (random.NextDouble() < 0.05) // 5% output outliers
{
_outputs[i] = random.NextDouble() * 100;
}
else
{
_outputs[i] = random.NextDouble() * 10;
}
Copy link

Copilot AI Nov 10, 2025

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Both branches of this 'if' statement write to the same variable - consider using '?' to express intent better.

Suggested change
if (random.NextDouble() < 0.05) // 5% outliers
{
_inputs[i, j] = random.NextDouble() * 100; // Large outlier
}
else
{
_inputs[i, j] = random.NextDouble() * 2 - 1; // Normal data
}
}
if (random.NextDouble() < 0.05) // 5% output outliers
{
_outputs[i] = random.NextDouble() * 100;
}
else
{
_outputs[i] = random.NextDouble() * 10;
}
_inputs[i, j] = (random.NextDouble() < 0.05)
? random.NextDouble() * 100 // Large outlier
: random.NextDouble() * 2 - 1; // Normal data
}
_outputs[i] = (random.NextDouble() < 0.05)
? random.NextDouble() * 100
: random.NextDouble() * 10;

Copilot uses AI. Check for mistakes.
Comment on lines +53 to +60
if (random.NextDouble() < 0.05) // 5% output outliers
{
_outputs[i] = random.NextDouble() * 100;
}
else
{
_outputs[i] = random.NextDouble() * 10;
}
Copy link

Copilot AI Nov 10, 2025

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Both branches of this 'if' statement write to the same variable - consider using '?' to express intent better.

Suggested change
if (random.NextDouble() < 0.05) // 5% output outliers
{
_outputs[i] = random.NextDouble() * 100;
}
else
{
_outputs[i] = random.NextDouble() * 10;
}
// 5% output outliers
_outputs[i] = (random.NextDouble() < 0.05)
? random.NextDouble() * 100
: random.NextDouble() * 10;

Copilot uses AI. Check for mistakes.
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

None yet

Projects

None yet

Development

Successfully merging this pull request may close these issues.

3 participants