Skip to content

Feat: add command-line arguments for backend parameters #86

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Aug 12, 2025
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
20 changes: 16 additions & 4 deletions gpt_oss/generate.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,10 +19,10 @@ def main(args):
from gpt_oss.torch.utils import init_distributed
from gpt_oss.triton.model import TokenGenerator as TritonGenerator
device = init_distributed()
generator = TritonGenerator(args.checkpoint, context=4096, device=device)
generator = TritonGenerator(args.checkpoint, context=args.context_length, device=device)
case "vllm":
from gpt_oss.vllm.token_generator import TokenGenerator as VLLMGenerator
generator = VLLMGenerator(args.checkpoint, tensor_parallel_size=2)
generator = VLLMGenerator(args.checkpoint, tensor_parallel_size=args.tensor_parallel_size)
case _:
raise ValueError(f"Invalid backend: {args.backend}")

Expand All @@ -31,9 +31,9 @@ def main(args):
max_tokens = None if args.limit == 0 else args.limit
for token, logprob in generator.generate(tokens, stop_tokens=[tokenizer.eot_token], temperature=args.temperature, max_tokens=max_tokens, return_logprobs=True):
tokens.append(token)
decoded_token = tokenizer.decode([token])
token_text = tokenizer.decode([token])
print(
f"Generated token: {repr(decoded_token)}, logprob: {logprob}"
f"Generated token: {repr(token_text)}, logprob: {logprob}"
)


Expand Down Expand Up @@ -78,6 +78,18 @@ def main(args):
choices=["triton", "torch", "vllm"],
help="Inference backend",
)
parser.add_argument(
"--tensor-parallel-size",
type=int,
default=2,
help="Tensor parallel size for vLLM backend",
)
parser.add_argument(
"--context-length",
type=int,
default=4096,
help="Context length for Triton backend",
)
args = parser.parse_args()

main(args)