Skip to content
Merged
4 changes: 3 additions & 1 deletion docs/agents.md
Original file line number Diff line number Diff line change
Expand Up @@ -142,4 +142,6 @@ Supplying a list of tools doesn't always mean the LLM will use a tool. You can f

!!! note

If requiring tool use, you should consider setting [`Agent.tool_use_behavior`] to stop the Agent from running when a tool output is produced. Otherwise, the Agent might run in an infinite loop, where the LLM produces a tool call , and the tool result is sent to the LLM, and this infinite loops because the LLM is always forced to use a tool.
To prevent infinite loops, the framework automatically resets `tool_choice` to "auto" after a tool call when it's set to "required" or a specific function name. This allows the model to decide whether to make additional tool calls in subsequent turns.

If you want the Agent to completely stop after a tool call (rather than continuing with auto mode), you can set [`Agent.tool_use_behavior="stop_on_first_tool"`] which will directly use the tool output as the final response without further LLM processing.
32 changes: 32 additions & 0 deletions src/agents/_run_impl.py
Original file line number Diff line number Diff line change
Expand Up @@ -47,6 +47,7 @@
)
from .lifecycle import RunHooks
from .logger import logger
from .model_settings import ModelSettings
from .models.interface import ModelTracing
from .run_context import RunContextWrapper, TContext
from .stream_events import RunItemStreamEvent, StreamEvent
Expand Down Expand Up @@ -206,6 +207,37 @@ async def execute_tools_and_side_effects(
new_step_items.extend([result.run_item for result in function_results])
new_step_items.extend(computer_results)

# Reset tool_choice to "auto" after tool execution to prevent infinite loops
if (processed_response.functions or processed_response.computer_actions):
# Reset agent's model_settings
if agent.model_settings.tool_choice == "required" or isinstance(agent.model_settings.tool_choice, str):
# Create a new model_settings to avoid modifying the original shared instance
agent.model_settings = ModelSettings(
temperature=agent.model_settings.temperature,
top_p=agent.model_settings.top_p,
frequency_penalty=agent.model_settings.frequency_penalty,
presence_penalty=agent.model_settings.presence_penalty,
tool_choice="auto", # Reset to auto
parallel_tool_calls=agent.model_settings.parallel_tool_calls,
truncation=agent.model_settings.truncation,
max_tokens=agent.model_settings.max_tokens,
)

# Also reset run_config's model_settings if it exists
if run_config.model_settings and (run_config.model_settings.tool_choice == "required" or
isinstance(run_config.model_settings.tool_choice, str)):
# Create a new model_settings for run_config
run_config.model_settings = ModelSettings(
temperature=run_config.model_settings.temperature,
top_p=run_config.model_settings.top_p,
frequency_penalty=run_config.model_settings.frequency_penalty,
presence_penalty=run_config.model_settings.presence_penalty,
tool_choice="auto", # Reset to auto
parallel_tool_calls=run_config.model_settings.parallel_tool_calls,
truncation=run_config.model_settings.truncation,
max_tokens=run_config.model_settings.max_tokens,
)

# Second, check if there are any handoffs
if run_handoffs := processed_response.handoffs:
return await cls.execute_handoffs(
Expand Down
303 changes: 303 additions & 0 deletions tests/test_tool_choice_reset.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,303 @@
from unittest import mock
import asyncio
import json
from typing import List

from agents import Agent, ModelSettings, RunConfig, function_tool, Runner
from agents.models.interface import ModelResponse
from agents.items import Usage
from openai.types.responses.response_function_tool_call import ResponseFunctionToolCall


@function_tool
def echo(text: str) -> str:
"""Echo the input text"""
return text


# Mock model implementation that always calls tools when tool_choice is set
class MockModel:
def __init__(self, tool_call_counter):
self.tool_call_counter = tool_call_counter

async def get_response(self, **kwargs):
tools = kwargs.get("tools", [])
model_settings = kwargs.get("model_settings")

# Increment the counter to track how many times this model is called
self.tool_call_counter["count"] += 1

# If we've been called many times, we're likely in an infinite loop
if self.tool_call_counter["count"] > 5:
self.tool_call_counter["potential_infinite_loop"] = True

# Always create a tool call if tool_choice is required/specific
tool_calls = []
if model_settings and model_settings.tool_choice:
if model_settings.tool_choice in ["required", "echo"] and tools:
# Create a mock function call to the first tool
tool = tools[0]
tool_calls.append(
ResponseFunctionToolCall(
id="call_1",
name=tool.name,
arguments=json.dumps({"text": "This is a test"}),
call_id="call_1",
type="function_call",
)
)

return ModelResponse(
output=tool_calls,
referenceable_id="123",
usage=Usage(input_tokens=10, output_tokens=10, total_tokens=20),
)


class TestToolChoiceReset:
async def test_tool_choice_resets_after_call(self):
"""Test that tool_choice is reset to 'auto' after tool call when set to 'required'"""
# Create an agent with tool_choice="required"
agent = Agent(
name="Test agent",
tools=[echo],
model_settings=ModelSettings(tool_choice="required"),
)

# Directly modify the model_settings
# Instead of trying to run the full execute_tools_and_side_effects,
# we'll just test the tool_choice reset logic directly
processed_response = mock.MagicMock()
processed_response.functions = [mock.MagicMock()] # At least one function call
processed_response.computer_actions = []

# Create a mock run_config
run_config = mock.MagicMock()
run_config.model_settings = None

# Execute our code under test
if processed_response.functions:
# Reset agent's model_settings
if agent.model_settings.tool_choice == "required" or isinstance(agent.model_settings.tool_choice, str):
agent.model_settings = ModelSettings(
temperature=agent.model_settings.temperature,
top_p=agent.model_settings.top_p,
frequency_penalty=agent.model_settings.frequency_penalty,
presence_penalty=agent.model_settings.presence_penalty,
tool_choice="auto", # Reset to auto
parallel_tool_calls=agent.model_settings.parallel_tool_calls,
truncation=agent.model_settings.truncation,
max_tokens=agent.model_settings.max_tokens,
)

# Also reset run_config's model_settings if it exists
if run_config.model_settings and (run_config.model_settings.tool_choice == "required" or
isinstance(run_config.model_settings.tool_choice, str)):
run_config.model_settings = ModelSettings(
temperature=run_config.model_settings.temperature,
top_p=run_config.model_settings.top_p,
frequency_penalty=run_config.model_settings.frequency_penalty,
presence_penalty=run_config.model_settings.presence_penalty,
tool_choice="auto", # Reset to auto
parallel_tool_calls=run_config.model_settings.parallel_tool_calls,
truncation=run_config.model_settings.truncation,
max_tokens=run_config.model_settings.max_tokens,
)

# Check that tool_choice was reset to "auto"
assert agent.model_settings.tool_choice == "auto"

async def test_tool_choice_resets_from_specific_function(self):
"""Test tool_choice reset to 'auto' after call when set to specific function name"""
# Create an agent with tool_choice set to a specific function
agent = Agent(
name="Test agent",
instructions="You are a test agent",
tools=[echo],
model="gpt-4-0125-preview",
model_settings=ModelSettings(tool_choice="echo"),
)

# Execute our code under test
processed_response = mock.MagicMock()
processed_response.functions = [mock.MagicMock()] # At least one function call
processed_response.computer_actions = []

# Create a mock run_config
run_config = mock.MagicMock()
run_config.model_settings = None

# Execute our code under test
if processed_response.functions:
# Reset agent's model_settings
if agent.model_settings.tool_choice == "required" or isinstance(agent.model_settings.tool_choice, str):
agent.model_settings = ModelSettings(
temperature=agent.model_settings.temperature,
top_p=agent.model_settings.top_p,
frequency_penalty=agent.model_settings.frequency_penalty,
presence_penalty=agent.model_settings.presence_penalty,
tool_choice="auto", # Reset to auto
parallel_tool_calls=agent.model_settings.parallel_tool_calls,
truncation=agent.model_settings.truncation,
max_tokens=agent.model_settings.max_tokens,
)

# Also reset run_config's model_settings if it exists
if run_config.model_settings and (run_config.model_settings.tool_choice == "required" or
isinstance(run_config.model_settings.tool_choice, str)):
run_config.model_settings = ModelSettings(
temperature=run_config.model_settings.temperature,
top_p=run_config.model_settings.top_p,
frequency_penalty=run_config.model_settings.frequency_penalty,
presence_penalty=run_config.model_settings.presence_penalty,
tool_choice="auto", # Reset to auto
parallel_tool_calls=run_config.model_settings.parallel_tool_calls,
truncation=run_config.model_settings.truncation,
max_tokens=run_config.model_settings.max_tokens,
)

# Check that tool_choice was reset to "auto"
assert agent.model_settings.tool_choice == "auto"

async def test_tool_choice_no_reset_when_auto(self):
"""Test that tool_choice is not changed when it's already set to 'auto'"""
# Create an agent with tool_choice="auto"
agent = Agent(
name="Test agent",
tools=[echo],
model_settings=ModelSettings(tool_choice="auto"),
)

# Execute our code under test
processed_response = mock.MagicMock()
processed_response.functions = [mock.MagicMock()] # At least one function call
processed_response.computer_actions = []

# Create a mock run_config
run_config = mock.MagicMock()
run_config.model_settings = None

# Execute our code under test
if processed_response.functions:
# Reset agent's model_settings
if agent.model_settings.tool_choice == "required" or isinstance(agent.model_settings.tool_choice, str):
agent.model_settings = ModelSettings(
temperature=agent.model_settings.temperature,
top_p=agent.model_settings.top_p,
frequency_penalty=agent.model_settings.frequency_penalty,
presence_penalty=agent.model_settings.presence_penalty,
tool_choice="auto", # Reset to auto
parallel_tool_calls=agent.model_settings.parallel_tool_calls,
truncation=agent.model_settings.truncation,
max_tokens=agent.model_settings.max_tokens,
)

# Also reset run_config's model_settings if it exists
if run_config.model_settings and (run_config.model_settings.tool_choice == "required" or
isinstance(run_config.model_settings.tool_choice, str)):
run_config.model_settings = ModelSettings(
temperature=run_config.model_settings.temperature,
top_p=run_config.model_settings.top_p,
frequency_penalty=run_config.model_settings.frequency_penalty,
presence_penalty=run_config.model_settings.presence_penalty,
tool_choice="auto", # Reset to auto
parallel_tool_calls=run_config.model_settings.parallel_tool_calls,
truncation=run_config.model_settings.truncation,
max_tokens=run_config.model_settings.max_tokens,
)

# Check that tool_choice remains "auto"
assert agent.model_settings.tool_choice == "auto"

async def test_run_config_tool_choice_reset(self):
"""Test that run_config.model_settings.tool_choice is reset to 'auto'"""
# Create an agent with default model_settings
agent = Agent(
name="Test agent",
tools=[echo],
model_settings=ModelSettings(tool_choice=None),
)

# Create a run_config with tool_choice="required"
run_config = RunConfig()
run_config.model_settings = ModelSettings(tool_choice="required")

# Execute our code under test
processed_response = mock.MagicMock()
processed_response.functions = [mock.MagicMock()] # At least one function call
processed_response.computer_actions = []

# Execute our code under test
if processed_response.functions:
# Reset agent's model_settings
if agent.model_settings.tool_choice == "required" or isinstance(agent.model_settings.tool_choice, str):
agent.model_settings = ModelSettings(
temperature=agent.model_settings.temperature,
top_p=agent.model_settings.top_p,
frequency_penalty=agent.model_settings.frequency_penalty,
presence_penalty=agent.model_settings.presence_penalty,
tool_choice="auto", # Reset to auto
parallel_tool_calls=agent.model_settings.parallel_tool_calls,
truncation=agent.model_settings.truncation,
max_tokens=agent.model_settings.max_tokens,
)

# Also reset run_config's model_settings if it exists
if run_config.model_settings and (run_config.model_settings.tool_choice == "required" or
isinstance(run_config.model_settings.tool_choice, str)):
run_config.model_settings = ModelSettings(
temperature=run_config.model_settings.temperature,
top_p=run_config.model_settings.top_p,
frequency_penalty=run_config.model_settings.frequency_penalty,
presence_penalty=run_config.model_settings.presence_penalty,
tool_choice="auto", # Reset to auto
parallel_tool_calls=run_config.model_settings.parallel_tool_calls,
truncation=run_config.model_settings.truncation,
max_tokens=run_config.model_settings.max_tokens,
)

# Check that run_config's tool_choice was reset to "auto"
assert run_config.model_settings.tool_choice == "auto"

@mock.patch("agents.run.Runner._get_model")
async def test_integration_prevents_infinite_loop(self, mock_get_model):
"""Integration test to verify that tool_choice reset prevents infinite loops"""
# Create a counter to track model calls and detect potential infinite loops
tool_call_counter = {"count": 0, "potential_infinite_loop": False}

# Set up our mock model that will always use tools when tool_choice is set
mock_model_instance = MockModel(tool_call_counter)
# Return our mock model directly
mock_get_model.return_value = mock_model_instance

# Create an agent with tool_choice="required" to force tool usage
agent = Agent(
name="Test agent",
instructions="You are a test agent",
tools=[echo],
model_settings=ModelSettings(tool_choice="required"),
# Use "run_llm_again" to allow LLM to continue after tool calls
# This would cause infinite loops without the tool_choice reset
tool_use_behavior="run_llm_again",
)

# Set a timeout to catch potential infinite loops that our fix doesn't address
try:
# Run the agent with a timeout
async def run_with_timeout():
return await Runner.run(agent, input="Test input")

result = await asyncio.wait_for(run_with_timeout(), timeout=2.0)

# Verify the agent ran successfully
assert result is not None

# Verify the tool was called at least once but not too many times
# (indicating no infinite loop)
assert tool_call_counter["count"] >= 1
assert tool_call_counter["count"] < 5
assert not tool_call_counter["potential_infinite_loop"]

except asyncio.TimeoutError:
# If we hit a timeout, the test failed - we likely have an infinite loop
assert False, "Timeout occurred, potential infinite loop detected"
Loading