@@ -813,28 +813,128 @@ mean median min input size model
813
813
126.64 125.09 110.45 [ 1280, 720] CRNN with [ 'text_recognition_CRNN_EN_2022oct_int8.onnx']
814
814
```
815
815
816
- <!--
816
+ ### Jetson Nano Orin
817
817
818
- ### NVIDIA Jetson Orin Nano
818
+ Specs: https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-orin/
819
+ - CPU: 6-core Arm® Cortex®-A78AE v8.2 64-bit CPU, 1.5MB L2 + 4MB L3
820
+ - GPU: 1024-core NVIDIA Ampere architecture GPU with 32 Tensor Cores, max freq 625MHz
819
821
820
822
CPU:
821
823
822
824
```
823
- 59.30 58.45 57.90 [ 1280, 720] VitTrack with [ 'object_tracking_vittrack_2023sep.onnx']
825
+ $ python3 benchmark.py --all
826
+ Benchmarking ...
827
+ backend=cv.dnn.DNN_BACKEND_OPENCV
828
+ target=cv.dnn.DNN_TARGET_CPU
829
+ mean median min input size model
830
+ 2.59 2.62 2.50 [ 160, 120] YuNet with [ 'face_detection_yunet_2023mar.onnx']
831
+ 2.98 2.97 2.50 [ 160, 120] YuNet with [ 'face_detection_yunet_2023mar_int8.onnx']
832
+ 20.05 24.76 19.75 [ 150, 150] SFace with [ 'face_recognition_sface_2021dec.onnx']
833
+ 31.84 32.72 19.75 [ 150, 150] SFace with [ 'face_recognition_sface_2021dec_int8.onnx']
834
+ 9.15 9.22 9.04 [ 112, 112] FacialExpressionRecog with [ 'facial_expression_recognition_mobilefacenet_2022july.onnx']
835
+ 14.33 15.35 9.04 [ 112, 112] FacialExpressionRecog with [ 'facial_expression_recognition_mobilefacenet_2022july_int8.onnx']
836
+ 15.00 15.17 14.80 [ 224, 224] MPHandPose with [ 'handpose_estimation_mediapipe_2023feb.onnx']
837
+ 18.37 18.63 14.80 [ 224, 224] MPHandPose with [ 'handpose_estimation_mediapipe_2023feb_int8.onnx']
838
+ 24.86 25.09 24.12 [ 192, 192] PPHumanSeg with [ 'human_segmentation_pphumanseg_2023mar.onnx']
839
+ 30.17 34.51 24.12 [ 192, 192] PPHumanSeg with [ 'human_segmentation_pphumanseg_2023mar_int8.onnx']
840
+ 18.47 18.55 18.23 [ 224, 224] MobileNet with [ 'image_classification_mobilenetv1_2022apr.onnx']
841
+ 17.08 17.30 15.80 [ 224, 224] MobileNet with [ 'image_classification_mobilenetv2_2022apr.onnx']
842
+ 21.26 15.89 15.80 [ 224, 224] MobileNet with [ 'image_classification_mobilenetv1_2022apr_int8.onnx']
843
+ 23.19 24.15 15.80 [ 224, 224] MobileNet with [ 'image_classification_mobilenetv2_2022apr_int8.onnx']
844
+ 102.30 101.90 101.44 [ 224, 224] PPResNet with [ 'image_classification_ppresnet50_2022jan.onnx']
845
+ 142.33 146.24 101.44 [ 224, 224] PPResNet with [ 'image_classification_ppresnet50_2022jan_int8.onnx']
846
+ 39.91 39.01 38.46 [ 320, 240] LPD_YuNet with [ 'license_plate_detection_lpd_yunet_2023mar.onnx']
847
+ 51.35 50.70 38.46 [ 320, 240] LPD_YuNet with [ 'license_plate_detection_lpd_yunet_2023mar_int8.onnx']
848
+ 125.31 126.50 121.92 [ 416, 416] NanoDet with [ 'object_detection_nanodet_2022nov.onnx']
849
+ 132.95 133.67 121.92 [ 416, 416] NanoDet with [ 'object_detection_nanodet_2022nov_int8.onnx']
850
+ 400.91 430.48 384.87 [ 640, 640] YoloX with [ 'object_detection_yolox_2022nov.onnx']
851
+ 476.63 509.48 384.87 [ 640, 640] YoloX with [ 'object_detection_yolox_2022nov_int8.onnx']
852
+ 19.16 19.91 18.04 [ 1280, 720] VitTrack with [ 'object_tracking_vittrack_2023sep.onnx']
853
+ 27.73 26.93 26.72 [ 192, 192] MPPalmDet with [ 'palm_detection_mediapipe_2023feb.onnx']
854
+ 35.16 41.14 26.72 [ 192, 192] MPPalmDet with [ 'palm_detection_mediapipe_2023feb_int8.onnx']
855
+ 33.05 33.18 32.67 [ 224, 224] MPPersonDet with [ 'person_detection_mediapipe_2023mar.onnx']
856
+ 93.58 94.02 92.36 [ 128, 256] YoutuReID with [ 'person_reid_youtu_2021nov.onnx']
857
+ 119.80 153.20 92.36 [ 128, 256] YoutuReID with [ 'person_reid_youtu_2021nov_int8.onnx']
858
+ 31.51 32.19 30.69 [ 256, 256] MPPose with [ 'pose_estimation_mediapipe_2023mar.onnx']
859
+ 3.53 3.53 3.51 [ 100, 100] WeChatQRCode with [ 'detect_2021nov.prototxt', 'detect_2021nov.caffemodel', 'sr_2021nov.prototxt', 'sr_2021nov.caffemodel']
860
+ 78.10 77.77 77.17 [ 640, 480] PPOCRDet with [ 'text_detection_cn_ppocrv3_2023may.onnx']
861
+ 78.03 78.38 77.17 [ 640, 480] PPOCRDet with [ 'text_detection_en_ppocrv3_2023may.onnx']
862
+ 99.09 79.42 77.17 [ 640, 480] PPOCRDet with [ 'text_detection_cn_ppocrv3_2023may_int8.onnx']
863
+ 112.82 116.06 77.17 [ 640, 480] PPOCRDet with [ 'text_detection_en_ppocrv3_2023may_int8.onnx']
864
+ 142.97 142.84 135.56 [ 1280, 720] CRNN with [ 'text_recognition_CRNN_CH_2021sep.onnx']
865
+ 144.53 148.52 135.56 [ 1280, 720] CRNN with [ 'text_recognition_CRNN_CN_2021nov.onnx']
866
+ 134.47 146.62 112.91 [ 1280, 720] CRNN with [ 'text_recognition_CRNN_EN_2021sep.onnx']
867
+ 136.37 131.39 112.91 [ 1280, 720] CRNN with [ 'text_recognition_CRNN_CH_2023feb_fp16.onnx']
868
+ 132.08 117.15 109.24 [ 1280, 720] CRNN with [ 'text_recognition_CRNN_EN_2023feb_fp16.onnx']
869
+ 135.17 130.23 109.24 [ 1280, 720] CRNN with [ 'text_recognition_CRNN_CH_2022oct_int8.onnx']
870
+ 138.38 143.25 109.24 [ 1280, 720] CRNN with [ 'text_recognition_CRNN_CN_2021nov_int8.onnx']
871
+ 137.08 134.22 109.24 [ 1280, 720] CRNN with [ 'text_recognition_CRNN_EN_2022oct_int8.onnx']
824
872
```
825
873
826
- CUDA:
874
+ GPU ( CUDA-FP32) :
827
875
828
876
```
829
- 13.69 13.69 13.04 [ 1280, 720] VitTrack with [ 'object_tracking_vittrack_2023sep.onnx']
877
+ $ python3 benchmark.py --all --fp32 --cfg_exclude wechat --cfg_overwrite_backend_target 1
878
+ Benchmarking ...
879
+ backend=cv.dnn.DNN_BACKEND_CUDA
880
+ target=cv.dnn.DNN_TARGET_CUDA
881
+ mean median min input size model
882
+ 5.23 5.27 5.17 [ 160, 120] YuNet with [ 'face_detection_yunet_2023mar.onnx']
883
+ 7.59 7.62 7.55 [ 150, 150] SFace with [ 'face_recognition_sface_2021dec.onnx']
884
+ 8.48 8.46 8.37 [ 112, 112] FacialExpressionRecog with [ 'facial_expression_recognition_mobilefacenet_2022july.onnx']
885
+ 12.29 13.04 11.11 [ 224, 224] MPHandPose with [ 'handpose_estimation_mediapipe_2023feb.onnx']
886
+ 12.91 13.28 12.79 [ 192, 192] PPHumanSeg with [ 'human_segmentation_pphumanseg_2023mar.onnx']
887
+ 8.41 8.42 8.35 [ 224, 224] MobileNet with [ 'image_classification_mobilenetv1_2022apr.onnx']
888
+ 9.36 9.43 8.35 [ 224, 224] MobileNet with [ 'image_classification_mobilenetv2_2022apr.onnx']
889
+ 32.58 32.71 31.11 [ 224, 224] PPResNet with [ 'image_classification_ppresnet50_2022jan.onnx']
890
+ 16.33 16.08 16.04 [ 320, 240] LPD_YuNet with [ 'license_plate_detection_lpd_yunet_2023mar.onnx']
891
+ 24.46 24.35 24.01 [ 416, 416] NanoDet with [ 'object_detection_nanodet_2022nov.onnx']
892
+ 103.28 103.41 102.37 [ 640, 640] YoloX with [ 'object_detection_yolox_2022nov.onnx']
893
+ 19.75 19.78 19.10 [ 1280, 720] VitTrack with [ 'object_tracking_vittrack_2023sep.onnx']
894
+ 10.84 10.76 10.75 [ 192, 192] MPPalmDet with [ 'palm_detection_mediapipe_2023feb.onnx']
895
+ 14.50 14.50 14.36 [ 224, 224] MPPersonDet with [ 'person_detection_mediapipe_2023mar.onnx']
896
+ 23.53 23.36 23.16 [ 128, 256] YoutuReID with [ 'person_reid_youtu_2021nov.onnx']
897
+ 26.54 27.22 25.99 [ 256, 256] MPPose with [ 'pose_estimation_mediapipe_2023mar.onnx']
898
+ 27.49 27.80 26.97 [ 640, 480] PPOCRDet with [ 'text_detection_cn_ppocrv3_2023may.onnx']
899
+ 27.53 27.75 26.95 [ 640, 480] PPOCRDet with [ 'text_detection_en_ppocrv3_2023may.onnx']
900
+ 15.66 16.30 15.41 [ 1280, 720] CRNN with [ 'text_recognition_CRNN_CH_2021sep.onnx']
901
+ 15.91 15.80 15.41 [ 1280, 720] CRNN with [ 'text_recognition_CRNN_CN_2021nov.onnx']
902
+ 13.58 16.70 9.48 [ 1280, 720] CRNN with [ 'text_recognition_CRNN_EN_2021sep.onnx']
830
903
```
831
904
832
- CUDA-FP16:
905
+ GPU ( CUDA-FP16) :
833
906
834
907
```
835
- 16.29 15.77 15.77 [ 1280, 720] VitTrack with [ 'object_tracking_vittrack_2023sep.onnx']
908
+ $ python3 benchmark.py --all --fp32 --cfg_exclude wechat --cfg_overwrite_backend_target 2
909
+ Benchmarking ...
910
+ backend=cv.dnn.DNN_BACKEND_CUDA
911
+ target=cv.dnn.DNN_TARGET_CUDA_FP16
912
+ mean median min input size model
913
+ 5.00 5.04 4.92 [ 160, 120] YuNet with [ 'face_detection_yunet_2023mar.onnx']
914
+ 5.09 5.08 5.05 [ 150, 150] SFace with [ 'face_recognition_sface_2021dec.onnx']
915
+ 6.81 6.86 6.66 [ 112, 112] FacialExpressionRecog with [ 'facial_expression_recognition_mobilefacenet_2022july.onnx']
916
+ 9.19 10.18 9.06 [ 224, 224] MPHandPose with [ 'handpose_estimation_mediapipe_2023feb.onnx']
917
+ 16.20 16.62 15.93 [ 192, 192] PPHumanSeg with [ 'human_segmentation_pphumanseg_2023mar.onnx']
918
+ 6.84 6.82 6.80 [ 224, 224] MobileNet with [ 'image_classification_mobilenetv1_2022apr.onnx']
919
+ 7.46 7.87 6.80 [ 224, 224] MobileNet with [ 'image_classification_mobilenetv2_2022apr.onnx']
920
+ 14.18 14.16 14.03 [ 224, 224] PPResNet with [ 'image_classification_ppresnet50_2022jan.onnx']
921
+ 13.35 13.10 13.04 [ 320, 240] LPD_YuNet with [ 'license_plate_detection_lpd_yunet_2023mar.onnx']
922
+ 19.94 19.95 19.50 [ 416, 416] NanoDet with [ 'object_detection_nanodet_2022nov.onnx']
923
+ 72.25 72.91 70.99 [ 640, 640] YoloX with [ 'object_detection_yolox_2022nov.onnx']
924
+ 22.37 22.44 21.60 [ 1280, 720] VitTrack with [ 'object_tracking_vittrack_2023sep.onnx']
925
+ 8.92 8.92 8.84 [ 192, 192] MPPalmDet with [ 'palm_detection_mediapipe_2023feb.onnx']
926
+ 11.11 11.13 10.98 [ 224, 224] MPPersonDet with [ 'person_detection_mediapipe_2023mar.onnx']
927
+ 13.22 13.23 13.12 [ 128, 256] YoutuReID with [ 'person_reid_youtu_2021nov.onnx']
928
+ 26.79 27.04 26.24 [ 256, 256] MPPose with [ 'pose_estimation_mediapipe_2023mar.onnx']
929
+ 19.71 19.75 19.47 [ 640, 480] PPOCRDet with [ 'text_detection_cn_ppocrv3_2023may.onnx']
930
+ 19.76 19.93 19.47 [ 640, 480] PPOCRDet with [ 'text_detection_en_ppocrv3_2023may.onnx']
931
+ 16.30 15.88 15.80 [ 1280, 720] CRNN with [ 'text_recognition_CRNN_CH_2021sep.onnx']
932
+ 16.36 16.51 15.80 [ 1280, 720] CRNN with [ 'text_recognition_CRNN_CN_2021nov.onnx']
933
+ 13.64 16.27 8.90 [ 1280, 720] CRNN with [ 'text_recognition_CRNN_EN_2021sep.onnx']
836
934
```
837
935
936
+ <!--
937
+
838
938
### Atlas 200I DK
839
939
840
940
CPU:
0 commit comments