|
| 1 | +import torch |
| 2 | + |
| 3 | +from torch import nn |
| 4 | +import torch.nn.functional as F |
| 5 | + |
| 6 | +from torch.utils.data import Dataset |
| 7 | + |
| 8 | +from typing import Optional |
| 9 | + |
| 10 | +import anndata |
| 11 | +import numpy as np |
| 12 | +import pandas as pd |
| 13 | +import scipy.sparse |
| 14 | +import sklearn.decomposition |
| 15 | +import sklearn.feature_extraction.text |
| 16 | +import sklearn.preprocessing |
| 17 | +import sklearn.neighbors |
| 18 | +import sklearn.utils.extmath |
| 19 | + |
| 20 | +class tfidfTransformer(): |
| 21 | + def __init__(self): |
| 22 | + self.idf = None |
| 23 | + self.fitted = False |
| 24 | + |
| 25 | + def fit(self, X): |
| 26 | + self.idf = X.shape[0] / X.sum(axis=0) |
| 27 | + self.fitted = True |
| 28 | + |
| 29 | + def transform(self, X): |
| 30 | + if not self.fitted: |
| 31 | + raise RuntimeError('Transformer was not fitted on any data') |
| 32 | + if scipy.sparse.issparse(X): |
| 33 | + tf = X.multiply(1 / X.sum(axis=1)) |
| 34 | + return tf.multiply(self.idf) |
| 35 | + else: |
| 36 | + tf = X / X.sum(axis=1, keepdims=True) |
| 37 | + return tf * self.idf |
| 38 | + |
| 39 | + def fit_transform(self, X): |
| 40 | + self.fit(X) |
| 41 | + return self.transform(X) |
| 42 | + |
| 43 | +class lsiTransformer(): |
| 44 | + def __init__(self, |
| 45 | + n_components: int = 20, |
| 46 | + use_highly_variable = None |
| 47 | + ): |
| 48 | + self.n_components = n_components |
| 49 | + self.use_highly_variable = use_highly_variable |
| 50 | + self.tfidfTransformer = tfidfTransformer() |
| 51 | + self.normalizer = sklearn.preprocessing.Normalizer(norm="l1") |
| 52 | + self.pcaTransformer = sklearn.decomposition.TruncatedSVD(n_components = self.n_components, random_state=777) |
| 53 | + # self.lsi_mean = None |
| 54 | + # self.lsi_std = None |
| 55 | + self.fitted = None |
| 56 | + |
| 57 | + def fit(self, adata: anndata.AnnData): |
| 58 | + if self.use_highly_variable is None: |
| 59 | + self.use_highly_variable = "hvg" in adata.var |
| 60 | + adata_use = adata[:, adata.var["hvg"]] if self.use_highly_variable else adata |
| 61 | + X = self.tfidfTransformer.fit_transform(adata_use.X) |
| 62 | + X_norm = self.normalizer.fit_transform(X) |
| 63 | + X_norm = np.log1p(X_norm * 1e4) |
| 64 | + X_lsi = self.pcaTransformer.fit_transform(X_norm) |
| 65 | + # self.lsi_mean = X_lsi.mean(axis=1, keepdims=True) |
| 66 | + # self.lsi_std = X_lsi.std(axis=1, ddof=1, keepdims=True) |
| 67 | + self.fitted = True |
| 68 | + |
| 69 | + def transform(self, adata): |
| 70 | + if not self.fitted: |
| 71 | + raise RuntimeError('Transformer was not fitted on any data') |
| 72 | + adata_use = adata[:, adata.var["hvg"]] if self.use_highly_variable else adata |
| 73 | + X = self.tfidfTransformer.transform(adata_use.X) |
| 74 | + X_norm = self.normalizer.transform(X) |
| 75 | + X_norm = np.log1p(X_norm * 1e4) |
| 76 | + X_lsi = self.pcaTransformer.transform(X_norm) |
| 77 | + X_lsi -= X_lsi.mean(axis=1, keepdims=True) |
| 78 | + X_lsi /= X_lsi.std(axis=1, ddof=1, keepdims=True) |
| 79 | + lsi_df = pd.DataFrame(X_lsi, index = adata_use.obs_names) |
| 80 | + return lsi_df |
| 81 | + |
| 82 | + def fit_transform(self, adata): |
| 83 | + self.fit(adata) |
| 84 | + return self.transform(adata) |
| 85 | + |
| 86 | +class ModalityMatchingDataset(Dataset): |
| 87 | + def __init__( |
| 88 | + self, df_modality1, df_modality2, is_train=True |
| 89 | + ): |
| 90 | + super().__init__() |
| 91 | + self.df_modality1 = df_modality1 |
| 92 | + self.df_modality2 = df_modality2 |
| 93 | + self.is_train = is_train |
| 94 | + def __len__(self): |
| 95 | + return self.df_modality1.shape[0] |
| 96 | + |
| 97 | + def __getitem__(self, index: int): |
| 98 | + if self.is_train == True: |
| 99 | + x = self.df_modality1.iloc[index].values |
| 100 | + y = self.df_modality2.iloc[index].values |
| 101 | + return x, y |
| 102 | + else: |
| 103 | + x = self.df_modality1.iloc[index].values |
| 104 | + return x |
| 105 | + |
| 106 | +class Swish(torch.autograd.Function): |
| 107 | + @staticmethod |
| 108 | + def forward(ctx, i): |
| 109 | + result = i * sigmoid(i) |
| 110 | + ctx.save_for_backward(i) |
| 111 | + return result |
| 112 | + @staticmethod |
| 113 | + def backward(ctx, grad_output): |
| 114 | + i = ctx.saved_variables[0] |
| 115 | + sigmoid_i = sigmoid(i) |
| 116 | + return grad_output * (sigmoid_i * (1 + i * (1 - sigmoid_i))) |
| 117 | + |
| 118 | +class Swish_module(nn.Module): |
| 119 | + def forward(self, x): |
| 120 | + return Swish.apply(x) |
| 121 | + |
| 122 | +sigmoid = torch.nn.Sigmoid() |
| 123 | + |
| 124 | +class ModelRegressionGex2Atac(nn.Module): |
| 125 | + def __init__(self, dim_mod1, dim_mod2): |
| 126 | + super(ModelRegressionGex2Atac, self).__init__() |
| 127 | + #self.bn = torch.nn.BatchNorm1d(1024) |
| 128 | + self.input_ = nn.Linear(dim_mod1, 1024) |
| 129 | + self.fc = nn.Linear(1024, 256) |
| 130 | + self.fc1 = nn.Linear(256, 2048) |
| 131 | + self.dropout1 = nn.Dropout(p=0.298885630228993) |
| 132 | + self.dropout2 = nn.Dropout(p=0.11289717442776658) |
| 133 | + self.dropout3 = nn.Dropout(p=0.13523634924414762) |
| 134 | + self.output = nn.Linear(2048, dim_mod2) |
| 135 | + def forward(self, x): |
| 136 | + x = F.gelu(self.input_(x)) |
| 137 | + x = self.dropout1(x) |
| 138 | + x = F.gelu(self.fc(x)) |
| 139 | + x = self.dropout2(x) |
| 140 | + x = F.gelu(self.fc1(x)) |
| 141 | + x = self.dropout3(x) |
| 142 | + x = F.gelu(self.output(x)) |
| 143 | + return x |
| 144 | + |
| 145 | +class ModelRegressionAtac2Gex(nn.Module): # |
| 146 | + def __init__(self, dim_mod1, dim_mod2): |
| 147 | + super(ModelRegressionAtac2Gex, self).__init__() |
| 148 | + self.input_ = nn.Linear(dim_mod1, 2048) |
| 149 | + self.fc = nn.Linear(2048, 2048) |
| 150 | + self.fc1 = nn.Linear(2048, 512) |
| 151 | + self.dropout1 = nn.Dropout(p=0.2649138776004753) |
| 152 | + self.dropout2 = nn.Dropout(p=0.1769628308148758) |
| 153 | + self.dropout3 = nn.Dropout(p=0.2516791883012817) |
| 154 | + self.output = nn.Linear(512, dim_mod2) |
| 155 | + def forward(self, x): |
| 156 | + x = F.gelu(self.input_(x)) |
| 157 | + x = self.dropout1(x) |
| 158 | + x = F.gelu(self.fc(x)) |
| 159 | + x = self.dropout2(x) |
| 160 | + x = F.gelu(self.fc1(x)) |
| 161 | + x = self.dropout3(x) |
| 162 | + x = F.gelu(self.output(x)) |
| 163 | + return x |
| 164 | + |
| 165 | +class ModelRegressionAdt2Gex(nn.Module): |
| 166 | + def __init__(self, dim_mod1, dim_mod2): |
| 167 | + super(ModelRegressionAdt2Gex, self).__init__() |
| 168 | + self.input_ = nn.Linear(dim_mod1, 512) |
| 169 | + self.dropout1 = nn.Dropout(p=0.0) |
| 170 | + self.swish = Swish_module() |
| 171 | + self.fc = nn.Linear(512, 512) |
| 172 | + self.fc1 = nn.Linear(512, 512) |
| 173 | + self.fc2 = nn.Linear(512, 512) |
| 174 | + self.output = nn.Linear(512, dim_mod2) |
| 175 | + def forward(self, x): |
| 176 | + x = F.gelu(self.input_(x)) |
| 177 | + x = F.gelu(self.fc(x)) |
| 178 | + x = F.gelu(self.fc1(x)) |
| 179 | + x = F.gelu(self.fc2(x)) |
| 180 | + x = F.gelu(self.output(x)) |
| 181 | + return x |
| 182 | + |
| 183 | +class ModelRegressionGex2Adt(nn.Module): |
| 184 | + def __init__(self, dim_mod1, dim_mod2): |
| 185 | + super(ModelRegressionGex2Adt, self).__init__() |
| 186 | + self.input_ = nn.Linear(dim_mod1, 512) |
| 187 | + self.dropout1 = nn.Dropout(p=0.20335661386636347) |
| 188 | + self.dropout2 = nn.Dropout(p=0.15395289261127876) |
| 189 | + self.dropout3 = nn.Dropout(p=0.16902655078832815) |
| 190 | + self.fc = nn.Linear(512, 512) |
| 191 | + self.fc1 = nn.Linear(512, 2048) |
| 192 | + self.output = nn.Linear(2048, dim_mod2) |
| 193 | + def forward(self, x): |
| 194 | + # x = self.batchswap_noise(x) |
| 195 | + x = F.gelu(self.input_(x)) |
| 196 | + x = self.dropout1(x) |
| 197 | + x = F.gelu(self.fc(x)) |
| 198 | + x = self.dropout2(x) |
| 199 | + x = F.gelu(self.fc1(x)) |
| 200 | + x = self.dropout3(x) |
| 201 | + x = F.gelu(self.output(x)) |
| 202 | + return x |
| 203 | + |
| 204 | +def rmse(y, y_pred): |
| 205 | + return np.sqrt(np.mean(np.square(y - y_pred))) |
| 206 | + |
| 207 | +def train_and_valid(model, optimizer, loss_fn, dataloader_train, dataloader_test, name_model, device): |
| 208 | + best_score = 100000 |
| 209 | + for i in range(100): |
| 210 | + train_losses = [] |
| 211 | + test_losses = [] |
| 212 | + model.train() |
| 213 | + |
| 214 | + for x, y in dataloader_train: |
| 215 | + optimizer.zero_grad() |
| 216 | + output = model(x.float().to(device)) |
| 217 | + loss = torch.sqrt(loss_fn(output, y.float().to(device))) |
| 218 | + loss.backward() |
| 219 | + train_losses.append(loss.item()) |
| 220 | + optimizer.step() |
| 221 | + |
| 222 | + model.eval() |
| 223 | + with torch.no_grad(): |
| 224 | + for x, y in dataloader_test: |
| 225 | + output = model(x.float().to(device)) |
| 226 | + output[output<0] = 0.0 |
| 227 | + loss = torch.sqrt(loss_fn(output, y.float().to(device))) |
| 228 | + test_losses.append(loss.item()) |
| 229 | + |
| 230 | + outputs = [] |
| 231 | + targets = [] |
| 232 | + model.eval() |
| 233 | + with torch.no_grad(): |
| 234 | + for x, y in dataloader_test: |
| 235 | + output = model(x.float().to(device)) |
| 236 | + |
| 237 | + outputs.append(output.detach().cpu().numpy()) |
| 238 | + targets.append(y.float().detach().cpu().numpy()) |
| 239 | + cat_outputs = np.concatenate(outputs) |
| 240 | + cat_targets = np.concatenate(targets) |
| 241 | + cat_outputs[cat_outputs<0.0] = 0 |
| 242 | + |
| 243 | + if best_score > rmse(cat_targets,cat_outputs): |
| 244 | + torch.save(model.state_dict(), name_model) |
| 245 | + best_score = rmse(cat_targets,cat_outputs) |
| 246 | + print("best rmse: ", best_score) |
0 commit comments