Skip to content

Predicting solution for banking customer complains using CNN RNN

Notifications You must be signed in to change notification settings

orapradeep/Solution-prediction

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Project: Classify Consumer Complaints

Highlights:

  • This is a multi-class text classification (sentence classification) problem.
  • The purpose of this project is to classify Kaggle Consumer Finance Complaints into 11 classes.
  • The model was built with Convolutional Neural Network (CNN) and Word Embeddings on Tensorflow.

Data: [Consumer Complaints]

  • Input: consumer_complaint_narrative

  • Output: product

Train:

  • Command: python3 train.py training_data.file parameters.json
  • Example: python3 train.py ./data/consumer_complaints.csv.zip ./parameters.json

A directory will be created during training, and the best model will be saved in this directory.

Predict:

Provide the model directory (created when running train.py) and new data to predict.py.

  • Command: python3 predict.py ./trained_model_directory/ new_data.file
  • Example: python3 predict.py ./trained_model_1479757124/ ./data/small_samples.json

Reference:

About

Predicting solution for banking customer complains using CNN RNN

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages