|
1 | 1 | ---
|
2 | 2 | title: AI Endpoints - Billing and lifecycle
|
3 | 3 | excerpt: Learn how we bill AI Endpoints
|
4 |
| -updated: 2025-04-28 |
| 4 | +updated: 2025-07-31 |
5 | 5 | ---
|
6 | 6 |
|
7 | 7 | > [!primary]
|
@@ -31,36 +31,36 @@ By following this model lifecycle process, OVHcloud ensures that customers are w
|
31 | 31 |
|
32 | 32 | ## Billing principles
|
33 | 33 |
|
34 |
| -Here is the model billing overview for AI Endpoints. |
35 |
| - |
36 |
| -| Category | Model | Price ($) | Price (€) | Unit Price | |
37 |
| -| -------------- | --------------- | ------ | ------ | ---------- | |
38 |
| -| Large Language Model (LLM) | Llama 3.3 70B Instruct | 0.74 | 0.67 | per 1M tokens | |
39 |
| -| Large Language Model (LLM) | Llama 3.1 70B Instruct | 0.74 | 0.67 | per 1M tokens | |
40 |
| -| Large Language Model (LLM) | Mixtral 8x7B Instruct v0.1 | 0.70 | 0.63 | per 1M tokens | |
41 |
| -| Large Language Model (LLM) | Mistral-Nemo-Instruct-2407 | 0.14 | 0.13 | per 1M tokens | |
42 |
| -| Large Language Model (LLM) | Llama 3.1 8B Instruct | 0.10 | 0.10 | per 1M tokens | |
43 |
| -| Large Language Model (LLM) | Mistral 7B Instruct v0.3 | 0.11 | 0.10 | per 1M tokens | |
44 |
| -| Reasoning LLM | DeepSeek R1 Distill Llama 70B | 0.74 | 0.67 | per 1M tokens | |
45 |
| -| Reasoning LLM | Qwen3 32B | 0.09 | 0.08 | per 1M tokens | |
46 |
| -| Code LLM | Qwen2.5 Coder 32B Instruct | 0.96 | 0.87 | per 1M tokens | |
47 |
| -| Code LLM | Mamba Codestral 7B v0.1 | 0.21 | 0.19 | per 1M tokens | |
48 |
| -| Visual LLM | Mistral Small 3.2 24B Instruct 2506 | 0.10 | 0.09 | per 1M tokens | |
49 |
| -| Visual LLM | Qwen2.5 VL 72B Instruct | 1.01 | 0.91 | per 1M tokens | |
50 |
| -| Visual LLM | Llava Next Mistral 7B | 0.32 | 0.29 | per 1M tokens | |
51 |
| -| Embeddings | BGE Multilingual Gemma2 | 0.01 | 0.01 | per 1M tokens | |
52 |
| -| Embeddings | BGE-M3 | 0.01 | 0.01 | per 1M tokens | |
53 |
| -| Embeddings | BGE Base EN v1.5 | 0.01 | 0.005 | per 1M tokens | |
54 |
| -| Natural Language Processing (NLP) | Roberta Base Go Emotions | Free | Free | per 1M characters | |
55 |
| -| Natural Language Processing (NLP) | Bert Base Multilingual uncased sentiment | Free | Free | per 1M characters | |
56 |
| -| Natural Language Processing (NLP) | Bert Base NER | Free | Free | per 1M characters | |
57 |
| -| Natural Language Processing (NLP) | Bart Large CNN | Free | Free | per 1M characters | |
58 |
| -| Image generation| Stable Diffusion XL | Free | Free | per image | |
59 |
| -| Speech to Text | RIVA Automatic Speech Recognition | Free | Free | per hour | |
60 |
| -| Text to Speech | RIVA Text-to-Speech | Free | Free | per hour | |
61 |
| -| Translation | T5-Large | Free | Free | per 1M characters | |
62 |
| -| Computer vision | YOLOv11 Object Detection | Free | Free | per image | |
63 |
| -| Computer vision | YOLOv11 Image Segmentation | Free | Free | per image | |
| 34 | +Here is the model billing overview for AI Endpoints models: |
| 35 | + |
| 36 | +| Category | Model | Input Price (\$) | Output Price (\$) | Input Price (€) | Output Price (€) | Unit Price | |
| 37 | +| -------------------------- | -------------------------- | ---------------- | ----------------- | --------------- | ---------------- | --------------------------------- | |
| 38 | +| Large Language Model (LLM) | Llama 3.3 70B Instruct | 0.74 | 0.74 | 0.67 | 0.67 | Per 1 million tokens | |
| 39 | +| Large Language Model (LLM) | Llama 3.1 70B Instruct | 0.74 | 0.74 | 0.67 | 0.67 | Per 1 million tokens | |
| 40 | +| Large Language Model (LLM) | Mixtral 8x7B Instruct v0.1 | 0.70 | 0.70 | 0.63 | 0.63 | Per 1 million tokens | |
| 41 | +| Large Language Model (LLM) | Mistral Nemo Instruct 2407 | 0.14 | 0.14 | 0.13 | 0.13 | Per 1 million tokens | |
| 42 | +| Large Language Model (LLM) | Llama 3.1 8B Instruct | 0.11 | 0.11 | 0.10 | 0.10 | Per 1 million tokens | |
| 43 | +| Large Language Model (LLM) | Mistral 7B Instruct v0.3 | 0.11 | 0.11 | 0.10 | 0.10 | Per 1 million tokens | |
| 44 | +| Reasoning LLM | Qwen 3 32B | 0.09 | 0.25 | 0.08 | 0.23 | Per 1 million tokens | |
| 45 | +| Reasoning LLM | DeepSeek R1 Distill Llama 70B | 0.74 | 0.74 | 0.67 | 0.67 | Per 1 million tokens | |
| 46 | +| Code LLM | Qwen 2.5 Coder 32B Instruct | 0.96 | 0.96 | 0.87 | 0.87 | Per 1 million tokens | |
| 47 | +| Code LLM | Mamba Codestral 7B v0.1 | 0.21 | 0.21 | 0.19 | 0.19 | Per 1 million tokens | |
| 48 | +| Visual LLM | Mistral Small 3.2 24B Instruct 2506 | 0.10 | 0.31 | 0.09 | 0.28 | Per 1 million tokens | |
| 49 | +| Visual LLM | Qwen 2.5 VL 72B Instruct | 1.01 | 1.01 | 0.91 | 0.91 | Per 1 million tokens | |
| 50 | +| Visual LLM | Llava Next Mistral 7B | 0.32 | 0.32 | 0.29 | 0.29 | Per 1 million tokens | |
| 51 | +| Embeddings | BGE Multilingual Gemma2 | 0.01 | 0.01 | Free | Free | Per 1 million tokens | |
| 52 | +| Embeddings | BGE M3 | 0.01 | 0.01 | Free | Free | Per 1 million tokens | |
| 53 | +| Embeddings | BGE Base EN v1.5 | 0.01 | 0.01 | Free | Free | Per 1 million tokens | |
| 54 | +| Natural Language Processing (NLP) | Roberta Base Go Emotions | Free | Free | Free | Free | Per 1 million characters | |
| 55 | +| Natural Language Processing (NLP) | Bert Base Multilingual uncased sentiment | Free | Free | Free | Free | Per 1 million characters | |
| 56 | +| Natural Language Processing (NLP) | Bert Base NER | Free | Free | Free | Free | Per 1 million characters | |
| 57 | +| Natural Language Processing (NLP) | Bart Large CNN | Free | Free | Free | Free | Per 1 million characters | |
| 58 | +| Image generation | Stable Diffusion XL | Free | Free | Free | Free | Per image | |
| 59 | +| Audio Analysis | RIVA Automatic Speech Recognition | Free | Free | Free | Free | Per hour | |
| 60 | +| Audio Analysis | RIVA Text-to-Speech | Free | Free | Free | Free | Per hour | |
| 61 | +| Translation | T5-Large | Free | Free | Free | Free | Per 1 million characters | |
| 62 | +| Computer vision | YOLOv11 Object Detection | Free | Free | Free | Free | Per image | |
| 63 | +| Computer vision | YOLOv11 Image Segmentation | Free | Free | Free | Free | Per image | |
64 | 64 |
|
65 | 65 | ## Feedback
|
66 | 66 |
|
|
0 commit comments