Skip to content

Commit 966f630

Browse files
committed
update doctests
1 parent a142fbf commit 966f630

File tree

7 files changed

+26
-26
lines changed

7 files changed

+26
-26
lines changed

pandas/core/arrays/datetimelike.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -1649,7 +1649,7 @@ def mean(self, *, skipna: bool = True, axis: AxisInt | None = 0):
16491649
>>> idx = pd.date_range("2001-01-01 00:00", periods=3)
16501650
>>> idx
16511651
DatetimeIndex(['2001-01-01', '2001-01-02', '2001-01-03'],
1652-
dtype='datetime64[ns]', freq='D')
1652+
dtype='datetime64[us]', freq='D')
16531653
>>> idx.mean()
16541654
Timestamp('2001-01-02 00:00:00')
16551655
@@ -2018,7 +2018,7 @@ def freq(self):
20182018
'2022-02-22 06:22:22-06:00', '2022-02-22 07:22:22-06:00',
20192019
'2022-02-22 08:22:22-06:00', '2022-02-22 09:22:22-06:00',
20202020
'2022-02-22 10:22:22-06:00', '2022-02-22 11:22:22-06:00'],
2021-
dtype='datetime64[ns, America/Chicago]', freq='h')
2021+
dtype='datetime64[us, America/Chicago]', freq='h')
20222022
>>> datetimeindex.freq
20232023
<Hour>
20242024
"""

pandas/core/arrays/datetimes.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1809,7 +1809,7 @@ def isocalendar(self) -> DataFrame:
18091809
0 2000-01-01 00:00:00.000000000
18101810
1 2000-01-01 00:00:00.000000001
18111811
2 2000-01-01 00:00:00.000000002
1812-
dtype: datetime64[us]
1812+
dtype: datetime64[ns]
18131813
>>> datetime_series.dt.nanosecond
18141814
0 0
18151815
1 1

pandas/core/generic.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -6446,7 +6446,7 @@ def astype(
64466446
0 2020-01-01
64476447
1 2020-01-02
64486448
2 2020-01-03
6449-
dtype: datetime64[ns]
6449+
dtype: datetime64[us]
64506450
"""
64516451
self._check_copy_deprecation(copy)
64526452
if is_dict_like(dtype):

pandas/core/indexes/accessors.py

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -286,7 +286,7 @@ class DatetimeProperties(Properties):
286286
0 2000-01-01 00:00:00
287287
1 2000-01-01 00:00:01
288288
2 2000-01-01 00:00:02
289-
dtype: datetime64[ns]
289+
dtype: datetime64[us]
290290
>>> seconds_series.dt.second
291291
0 0
292292
1 1
@@ -298,7 +298,7 @@ class DatetimeProperties(Properties):
298298
0 2000-01-01 00:00:00
299299
1 2000-01-01 01:00:00
300300
2 2000-01-01 02:00:00
301-
dtype: datetime64[ns]
301+
dtype: datetime64[us]
302302
>>> hours_series.dt.hour
303303
0 0
304304
1 1
@@ -310,7 +310,7 @@ class DatetimeProperties(Properties):
310310
0 2000-03-31
311311
1 2000-06-30
312312
2 2000-09-30
313-
dtype: datetime64[ns]
313+
dtype: datetime64[us]
314314
>>> quarters_series.dt.quarter
315315
0 1
316316
1 2
@@ -347,7 +347,7 @@ def to_pydatetime(self) -> Series:
347347
>>> s
348348
0 2018-03-10
349349
1 2018-03-11
350-
dtype: datetime64[ns]
350+
dtype: datetime64[us]
351351
352352
>>> s.dt.to_pydatetime()
353353
0 2018-03-10 00:00:00
@@ -360,7 +360,7 @@ def to_pydatetime(self) -> Series:
360360
>>> s
361361
0 2018-03-10 00:00:00.000000000
362362
1 2018-03-10 00:00:00.000000001
363-
dtype: datetime64[ns]
363+
dtype: datetime64[us]
364364
365365
>>> s.dt.to_pydatetime()
366366
0 2018-03-10 00:00:00

pandas/core/indexes/datetimes.py

Lines changed: 14 additions & 14 deletions
Original file line numberDiff line numberDiff line change
@@ -845,7 +845,7 @@ def indexer_between_time(
845845
>>> idx
846846
DatetimeIndex(['2023-01-01 00:00:00', '2023-01-01 01:00:00',
847847
'2023-01-01 02:00:00', '2023-01-01 03:00:00'],
848-
dtype='datetime64[ns]', freq='h')
848+
dtype='datetime64[us]', freq='h')
849849
>>> idx.indexer_between_time("00:00", "2:00", include_end=False)
850850
array([0, 1])
851851
"""
@@ -970,7 +970,7 @@ def date_range(
970970
>>> pd.date_range(start="1/1/2018", end="1/08/2018")
971971
DatetimeIndex(['2018-01-01', '2018-01-02', '2018-01-03', '2018-01-04',
972972
'2018-01-05', '2018-01-06', '2018-01-07', '2018-01-08'],
973-
dtype='datetime64[ns]', freq='D')
973+
dtype='datetime64[us]', freq='D')
974974
975975
Specify timezone-aware `start` and `end`, with the default daily frequency.
976976
@@ -982,29 +982,29 @@ def date_range(
982982
'2018-01-03 00:00:00+01:00', '2018-01-04 00:00:00+01:00',
983983
'2018-01-05 00:00:00+01:00', '2018-01-06 00:00:00+01:00',
984984
'2018-01-07 00:00:00+01:00', '2018-01-08 00:00:00+01:00'],
985-
dtype='datetime64[ns, Europe/Berlin]', freq='D')
985+
dtype='datetime64[us, Europe/Berlin]', freq='D')
986986
987987
Specify `start` and `periods`, the number of periods (days).
988988
989989
>>> pd.date_range(start="1/1/2018", periods=8)
990990
DatetimeIndex(['2018-01-01', '2018-01-02', '2018-01-03', '2018-01-04',
991991
'2018-01-05', '2018-01-06', '2018-01-07', '2018-01-08'],
992-
dtype='datetime64[ns]', freq='D')
992+
dtype='datetime64[us]', freq='D')
993993
994994
Specify `end` and `periods`, the number of periods (days).
995995
996996
>>> pd.date_range(end="1/1/2018", periods=8)
997997
DatetimeIndex(['2017-12-25', '2017-12-26', '2017-12-27', '2017-12-28',
998998
'2017-12-29', '2017-12-30', '2017-12-31', '2018-01-01'],
999-
dtype='datetime64[ns]', freq='D')
999+
dtype='datetime64[us]', freq='D')
10001000
10011001
Specify `start`, `end`, and `periods`; the frequency is generated
10021002
automatically (linearly spaced).
10031003
10041004
>>> pd.date_range(start="2018-04-24", end="2018-04-27", periods=3)
10051005
DatetimeIndex(['2018-04-24 00:00:00', '2018-04-25 12:00:00',
10061006
'2018-04-27 00:00:00'],
1007-
dtype='datetime64[ns]', freq=None)
1007+
dtype='datetime64[us]', freq=None)
10081008
10091009
**Other Parameters**
10101010
@@ -1013,49 +1013,49 @@ def date_range(
10131013
>>> pd.date_range(start="1/1/2018", periods=5, freq="ME")
10141014
DatetimeIndex(['2018-01-31', '2018-02-28', '2018-03-31', '2018-04-30',
10151015
'2018-05-31'],
1016-
dtype='datetime64[ns]', freq='ME')
1016+
dtype='datetime64[us]', freq='ME')
10171017
10181018
Multiples are allowed
10191019
10201020
>>> pd.date_range(start="1/1/2018", periods=5, freq="3ME")
10211021
DatetimeIndex(['2018-01-31', '2018-04-30', '2018-07-31', '2018-10-31',
10221022
'2019-01-31'],
1023-
dtype='datetime64[ns]', freq='3ME')
1023+
dtype='datetime64[us]', freq='3ME')
10241024
10251025
`freq` can also be specified as an Offset object.
10261026
10271027
>>> pd.date_range(start="1/1/2018", periods=5, freq=pd.offsets.MonthEnd(3))
10281028
DatetimeIndex(['2018-01-31', '2018-04-30', '2018-07-31', '2018-10-31',
10291029
'2019-01-31'],
1030-
dtype='datetime64[ns]', freq='3ME')
1030+
dtype='datetime64[us]', freq='3ME')
10311031
10321032
Specify `tz` to set the timezone.
10331033
10341034
>>> pd.date_range(start="1/1/2018", periods=5, tz="Asia/Tokyo")
10351035
DatetimeIndex(['2018-01-01 00:00:00+09:00', '2018-01-02 00:00:00+09:00',
10361036
'2018-01-03 00:00:00+09:00', '2018-01-04 00:00:00+09:00',
10371037
'2018-01-05 00:00:00+09:00'],
1038-
dtype='datetime64[ns, Asia/Tokyo]', freq='D')
1038+
dtype='datetime64[us, Asia/Tokyo]', freq='D')
10391039
10401040
`inclusive` controls whether to include `start` and `end` that are on the
10411041
boundary. The default, "both", includes boundary points on either end.
10421042
10431043
>>> pd.date_range(start="2017-01-01", end="2017-01-04", inclusive="both")
10441044
DatetimeIndex(['2017-01-01', '2017-01-02', '2017-01-03', '2017-01-04'],
1045-
dtype='datetime64[ns]', freq='D')
1045+
dtype='datetime64[us]', freq='D')
10461046
10471047
Use ``inclusive='left'`` to exclude `end` if it falls on the boundary.
10481048
10491049
>>> pd.date_range(start="2017-01-01", end="2017-01-04", inclusive="left")
10501050
DatetimeIndex(['2017-01-01', '2017-01-02', '2017-01-03'],
1051-
dtype='datetime64[ns]', freq='D')
1051+
dtype='datetime64[us]', freq='D')
10521052
10531053
Use ``inclusive='right'`` to exclude `start` if it falls on the boundary, and
10541054
similarly ``inclusive='neither'`` will exclude both `start` and `end`.
10551055
10561056
>>> pd.date_range(start="2017-01-01", end="2017-01-04", inclusive="right")
10571057
DatetimeIndex(['2017-01-02', '2017-01-03', '2017-01-04'],
1058-
dtype='datetime64[ns]', freq='D')
1058+
dtype='datetime64[us]', freq='D')
10591059
10601060
**Specify a unit**
10611061
@@ -1202,7 +1202,7 @@ def bdate_range(
12021202
>>> pd.bdate_range(start="1/1/2018", end="1/08/2018")
12031203
DatetimeIndex(['2018-01-01', '2018-01-02', '2018-01-03', '2018-01-04',
12041204
'2018-01-05', '2018-01-08'],
1205-
dtype='datetime64[ns]', freq='B')
1205+
dtype='datetime64[us]', freq='B')
12061206
"""
12071207
if freq is None:
12081208
msg = "freq must be specified for bdate_range; use date_range instead"

pandas/core/indexes/interval.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -1339,7 +1339,7 @@ def interval_range(
13391339
IntervalIndex([(2017-01-01 00:00:00, 2017-01-02 00:00:00],
13401340
(2017-01-02 00:00:00, 2017-01-03 00:00:00],
13411341
(2017-01-03 00:00:00, 2017-01-04 00:00:00]],
1342-
dtype='interval[datetime64[ns], right]')
1342+
dtype='interval[datetime64[us], right]')
13431343
13441344
The ``freq`` parameter specifies the frequency between the left and right.
13451345
endpoints of the individual intervals within the ``IntervalIndex``. For
@@ -1356,7 +1356,7 @@ def interval_range(
13561356
IntervalIndex([(2017-01-01 00:00:00, 2017-02-01 00:00:00],
13571357
(2017-02-01 00:00:00, 2017-03-01 00:00:00],
13581358
(2017-03-01 00:00:00, 2017-04-01 00:00:00]],
1359-
dtype='interval[datetime64[ns], right]')
1359+
dtype='interval[datetime64[us], right]')
13601360
13611361
Specify ``start``, ``end``, and ``periods``; the frequency is generated
13621362
automatically (linearly spaced).

pandas/core/series.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -777,7 +777,7 @@ def values(self):
777777
>>> pd.Series(pd.date_range("20130101", periods=3, tz="US/Eastern")).values
778778
array(['2013-01-01T05:00:00.000000000',
779779
'2013-01-02T05:00:00.000000000',
780-
'2013-01-03T05:00:00.000000000'], dtype='datetime64[ns]')
780+
'2013-01-03T05:00:00.000000000'], dtype='datetime64[us]')
781781
"""
782782
return self._mgr.external_values()
783783

0 commit comments

Comments
 (0)