@@ -845,7 +845,7 @@ def indexer_between_time(
845845 >>> idx
846846 DatetimeIndex(['2023-01-01 00:00:00', '2023-01-01 01:00:00',
847847 '2023-01-01 02:00:00', '2023-01-01 03:00:00'],
848- dtype='datetime64[ns ]', freq='h')
848+ dtype='datetime64[us ]', freq='h')
849849 >>> idx.indexer_between_time("00:00", "2:00", include_end=False)
850850 array([0, 1])
851851 """
@@ -970,7 +970,7 @@ def date_range(
970970 >>> pd.date_range(start="1/1/2018", end="1/08/2018")
971971 DatetimeIndex(['2018-01-01', '2018-01-02', '2018-01-03', '2018-01-04',
972972 '2018-01-05', '2018-01-06', '2018-01-07', '2018-01-08'],
973- dtype='datetime64[ns ]', freq='D')
973+ dtype='datetime64[us ]', freq='D')
974974
975975 Specify timezone-aware `start` and `end`, with the default daily frequency.
976976
@@ -982,29 +982,29 @@ def date_range(
982982 '2018-01-03 00:00:00+01:00', '2018-01-04 00:00:00+01:00',
983983 '2018-01-05 00:00:00+01:00', '2018-01-06 00:00:00+01:00',
984984 '2018-01-07 00:00:00+01:00', '2018-01-08 00:00:00+01:00'],
985- dtype='datetime64[ns , Europe/Berlin]', freq='D')
985+ dtype='datetime64[us , Europe/Berlin]', freq='D')
986986
987987 Specify `start` and `periods`, the number of periods (days).
988988
989989 >>> pd.date_range(start="1/1/2018", periods=8)
990990 DatetimeIndex(['2018-01-01', '2018-01-02', '2018-01-03', '2018-01-04',
991991 '2018-01-05', '2018-01-06', '2018-01-07', '2018-01-08'],
992- dtype='datetime64[ns ]', freq='D')
992+ dtype='datetime64[us ]', freq='D')
993993
994994 Specify `end` and `periods`, the number of periods (days).
995995
996996 >>> pd.date_range(end="1/1/2018", periods=8)
997997 DatetimeIndex(['2017-12-25', '2017-12-26', '2017-12-27', '2017-12-28',
998998 '2017-12-29', '2017-12-30', '2017-12-31', '2018-01-01'],
999- dtype='datetime64[ns ]', freq='D')
999+ dtype='datetime64[us ]', freq='D')
10001000
10011001 Specify `start`, `end`, and `periods`; the frequency is generated
10021002 automatically (linearly spaced).
10031003
10041004 >>> pd.date_range(start="2018-04-24", end="2018-04-27", periods=3)
10051005 DatetimeIndex(['2018-04-24 00:00:00', '2018-04-25 12:00:00',
10061006 '2018-04-27 00:00:00'],
1007- dtype='datetime64[ns ]', freq=None)
1007+ dtype='datetime64[us ]', freq=None)
10081008
10091009 **Other Parameters**
10101010
@@ -1013,49 +1013,49 @@ def date_range(
10131013 >>> pd.date_range(start="1/1/2018", periods=5, freq="ME")
10141014 DatetimeIndex(['2018-01-31', '2018-02-28', '2018-03-31', '2018-04-30',
10151015 '2018-05-31'],
1016- dtype='datetime64[ns ]', freq='ME')
1016+ dtype='datetime64[us ]', freq='ME')
10171017
10181018 Multiples are allowed
10191019
10201020 >>> pd.date_range(start="1/1/2018", periods=5, freq="3ME")
10211021 DatetimeIndex(['2018-01-31', '2018-04-30', '2018-07-31', '2018-10-31',
10221022 '2019-01-31'],
1023- dtype='datetime64[ns ]', freq='3ME')
1023+ dtype='datetime64[us ]', freq='3ME')
10241024
10251025 `freq` can also be specified as an Offset object.
10261026
10271027 >>> pd.date_range(start="1/1/2018", periods=5, freq=pd.offsets.MonthEnd(3))
10281028 DatetimeIndex(['2018-01-31', '2018-04-30', '2018-07-31', '2018-10-31',
10291029 '2019-01-31'],
1030- dtype='datetime64[ns ]', freq='3ME')
1030+ dtype='datetime64[us ]', freq='3ME')
10311031
10321032 Specify `tz` to set the timezone.
10331033
10341034 >>> pd.date_range(start="1/1/2018", periods=5, tz="Asia/Tokyo")
10351035 DatetimeIndex(['2018-01-01 00:00:00+09:00', '2018-01-02 00:00:00+09:00',
10361036 '2018-01-03 00:00:00+09:00', '2018-01-04 00:00:00+09:00',
10371037 '2018-01-05 00:00:00+09:00'],
1038- dtype='datetime64[ns , Asia/Tokyo]', freq='D')
1038+ dtype='datetime64[us , Asia/Tokyo]', freq='D')
10391039
10401040 `inclusive` controls whether to include `start` and `end` that are on the
10411041 boundary. The default, "both", includes boundary points on either end.
10421042
10431043 >>> pd.date_range(start="2017-01-01", end="2017-01-04", inclusive="both")
10441044 DatetimeIndex(['2017-01-01', '2017-01-02', '2017-01-03', '2017-01-04'],
1045- dtype='datetime64[ns ]', freq='D')
1045+ dtype='datetime64[us ]', freq='D')
10461046
10471047 Use ``inclusive='left'`` to exclude `end` if it falls on the boundary.
10481048
10491049 >>> pd.date_range(start="2017-01-01", end="2017-01-04", inclusive="left")
10501050 DatetimeIndex(['2017-01-01', '2017-01-02', '2017-01-03'],
1051- dtype='datetime64[ns ]', freq='D')
1051+ dtype='datetime64[us ]', freq='D')
10521052
10531053 Use ``inclusive='right'`` to exclude `start` if it falls on the boundary, and
10541054 similarly ``inclusive='neither'`` will exclude both `start` and `end`.
10551055
10561056 >>> pd.date_range(start="2017-01-01", end="2017-01-04", inclusive="right")
10571057 DatetimeIndex(['2017-01-02', '2017-01-03', '2017-01-04'],
1058- dtype='datetime64[ns ]', freq='D')
1058+ dtype='datetime64[us ]', freq='D')
10591059
10601060 **Specify a unit**
10611061
@@ -1202,7 +1202,7 @@ def bdate_range(
12021202 >>> pd.bdate_range(start="1/1/2018", end="1/08/2018")
12031203 DatetimeIndex(['2018-01-01', '2018-01-02', '2018-01-03', '2018-01-04',
12041204 '2018-01-05', '2018-01-08'],
1205- dtype='datetime64[ns ]', freq='B')
1205+ dtype='datetime64[us ]', freq='B')
12061206 """
12071207 if freq is None :
12081208 msg = "freq must be specified for bdate_range; use date_range instead"
0 commit comments