Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions doc/source/whatsnew/v2.3.0.rst
Original file line number Diff line number Diff line change
Expand Up @@ -106,6 +106,7 @@ Conversion

Strings
^^^^^^^
- Bug in :meth:`Series.__pos__` and :meth:`DataFrame.__pos__` did not raise for :class:`StringDtype` with ``storage="pyarrow"`` (:issue:`60710`)
- Bug in :meth:`Series.rank` for :class:`StringDtype` with ``storage="pyarrow"`` incorrectly returning integer results in case of ``method="average"`` and raising an error if it would truncate results (:issue:`59768`)
- Bug in :meth:`Series.replace` with :class:`StringDtype` when replacing with a non-string value was not upcasting to ``object`` dtype (:issue:`60282`)
- Bug in :meth:`Series.str.replace` when ``n < 0`` for :class:`StringDtype` with ``storage="pyarrow"`` (:issue:`59628`)
Expand Down
4 changes: 4 additions & 0 deletions pandas/core/arrays/string_arrow.py
Original file line number Diff line number Diff line change
Expand Up @@ -51,6 +51,7 @@
from pandas._typing import (
ArrayLike,
Dtype,
Self,
npt,
)

Expand Down Expand Up @@ -476,6 +477,9 @@ def _cmp_method(self, other, op):
return result.to_numpy(np.bool_, na_value=False)
return result

def __pos__(self) -> Self:
raise TypeError(f"bad operand type for unary +: '{self.dtype}'")


class ArrowStringArrayNumpySemantics(ArrowStringArray):
_na_value = np.nan
6 changes: 0 additions & 6 deletions pandas/tests/frame/test_unary.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,9 +3,6 @@
import numpy as np
import pytest

from pandas._config import using_string_dtype

from pandas.compat import HAS_PYARROW
from pandas.compat.numpy import np_version_gte1p25

import pandas as pd
Expand Down Expand Up @@ -120,9 +117,6 @@ def test_pos_object(self, df):
tm.assert_frame_equal(+df, df)
tm.assert_series_equal(+df["a"], df["a"])

@pytest.mark.xfail(
using_string_dtype() and HAS_PYARROW, reason="TODO(infer_string)"
)
@pytest.mark.parametrize(
"df",
[
Expand Down
Loading