Skip to content
Open
Show file tree
Hide file tree
Changes from 15 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
33 changes: 14 additions & 19 deletions pandas/core/arrays/interval.py
Original file line number Diff line number Diff line change
Expand Up @@ -2079,16 +2079,9 @@ def isin(self, values: ArrayLike) -> npt.NDArray[np.bool_]:
if self.dtype == values.dtype:
# GH#38353 instead of casting to object, operating on a
# complex128 ndarray is much more performant.
left = self._combined.view("complex128")
right = values._combined.view("complex128")
# error: Argument 1 to "isin" has incompatible type
# "Union[ExtensionArray, ndarray[Any, Any],
# ndarray[Any, dtype[Any]]]"; expected
# "Union[_SupportsArray[dtype[Any]],
# _NestedSequence[_SupportsArray[dtype[Any]]], bool,
# int, float, complex, str, bytes, _NestedSequence[
# Union[bool, int, float, complex, str, bytes]]]"
return np.isin(left, right).ravel() # type: ignore[arg-type]
left = self._combined
right = values._combined
return np.isin(left, right).ravel()

elif needs_i8_conversion(self.left.dtype) ^ needs_i8_conversion(
values.left.dtype
Expand All @@ -2110,18 +2103,21 @@ def _combined(self) -> IntervalSide:
comb = left._concat_same_type( # type: ignore[union-attr]
[left, right], axis=1
)
comb = comb.view("complex128")[:, 0]
else:
comb = np.concatenate([left, right], axis=1)
comb = (np.array(left.ravel(), dtype="complex128")) + (
1j * np.array(right.ravel(), dtype="complex128")
)
return comb

def _from_combined(self, combined: np.ndarray) -> IntervalArray:
"""
Create a new IntervalArray with our dtype from a 1D complex128 ndarray.
"""
nc = combined.view("i8").reshape(-1, 2)

dtype = self._left.dtype
if needs_i8_conversion(dtype):
nc = combined.view("i8").reshape(-1, 2)
assert isinstance(self._left, (DatetimeArray, TimedeltaArray))
new_left: DatetimeArray | TimedeltaArray | np.ndarray = type(
self._left
Expand All @@ -2132,16 +2128,15 @@ def _from_combined(self, combined: np.ndarray) -> IntervalArray:
)._from_sequence(nc[:, 1], dtype=dtype)
else:
assert isinstance(dtype, np.dtype)
new_left = nc[:, 0].view(dtype)
new_right = nc[:, 1].view(dtype)
new_left = np.real(combined).astype(dtype).ravel()
new_right = np.imag(combined).astype(dtype).ravel()
return self._shallow_copy(left=new_left, right=new_right)

def unique(self) -> IntervalArray:
# No overload variant of "__getitem__" of "ExtensionArray" matches argument
# type "Tuple[slice, int]"
nc = unique(
self._combined.view("complex128")[:, 0] # type: ignore[call-overload]
)
nc = unique(self._combined)
# Ensure nc is a numpy array for _from_combined
if not isinstance(nc, np.ndarray):
nc = np.asarray(nc)
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Is this hit by the tests?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

@rhshadrach I added this check to handle mypy failure. should I add a separate test for this one?

Copy link
Contributor

@johannes-mueller johannes-mueller Oct 9, 2025

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Is this check actually needed? I thought np.asarray() is doing such a check internally.

nc = nc[:, None]
return self._from_combined(nc)

Expand Down
25 changes: 25 additions & 0 deletions pandas/tests/arrays/interval/test_interval.py
Original file line number Diff line number Diff line change
Expand Up @@ -111,6 +111,31 @@ def test_shift_datetime(self):
with pytest.raises(TypeError, match=msg):
a.shift(1, fill_value=np.timedelta64("NaT", "ns"))

def test_unique_with_negatives(self):
# GH#61917
idx_pos = IntervalIndex.from_tuples(
[(3, 4), (3, 4), (2, 3), (2, 3), (1, 2), (1, 2)]
)
result = idx_pos.unique()
expected = IntervalIndex.from_tuples([(3, 4), (2, 3), (1, 2)])
tm.assert_index_equal(result, expected)

idx_neg = IntervalIndex.from_tuples(
[(-4, -3), (-4, -3), (-3, -2), (-3, -2), (-2, -1), (-2, -1)]
)
result = idx_neg.unique()
expected = IntervalIndex.from_tuples([(-4, -3), (-3, -2), (-2, -1)])
tm.assert_index_equal(result, expected)

idx_mix = IntervalIndex.from_tuples(
[(1, 2), (0, 1), (-1, 0), (-2, -1), (-3, -2), (-3, -2)]
)
result = idx_mix.unique()
expected = IntervalIndex.from_tuples(
[(1, 2), (0, 1), (-1, 0), (-2, -1), (-3, -2)]
)
tm.assert_index_equal(result, expected)


class TestSetitem:
def test_set_na(self, left_right_dtypes):
Expand Down
Loading