Comparison of monthly GloSAT in-filled 5x5 gridded HadCRUT-style analysis with station anomalies and the climate indicies NAO and SOI. Part of land surface air temperature station data record validation efforts and ongoing work for the GloSAT project: www.glosat.org.
merge_netcdfs.py
- Python helper to concatenate yearly HadCRUT5-style netcdf files.stations_to_gridded_netcdf.py
- Python reader to load in CRUTEM5 station archive and output raw gridded .nc.analysis_2_pkl.py
- Python reader to load gridded HadCRUT5-style analysis and output to .pkl. Used to provide gridded background for MAT and LAT overlays.mat_2_pkl.py
- Python reader to load gridded MAT and output to .pkl. Used to provide gridded MAT overlay.lat_2_pkl.py
- Python reader to load gridded LAT, area-average and output to .pkl. Used to provide gridded LAT overlay.nao_2_pkl.py
- Python reader to load Luterbacher and Jones monthly NAO indices and output to .pkl a merged timeseries from 1658-2022. Used to display monthly NAO value in each monthly comparison map.soi_2_pkl.py
- Python reader to load monthly SOI and output to .pkl. Used to display monthly SOI value in each monthly comparison map.aod_2_pkl.py
- Python reader to load volcanic AOD(550nm) and output to .pkl. Used to provide a perform large volcano detection (independent analysis for Emily Wallis).plot_glosat_analysis_vs_stations_vs_mat.py
- python script to read in the GloSAT.analysis.alpha.4 in-filled 5x5 gridded median netCDFs, the GloSAT.p04c.EBC.LEKnormals station anomalies, the gridded LAT, the gridded MAT and the merged NAO and SOI series, and plot a map for each month.plot_glosat_stations_vs_gridded.py
- python script to read in the GloSAT stations and overlay on gridded LAT, and plot a map for each month.crutem_2_pkl.py
- Python reader to load gridded CRUTEM5 and output area-weighted LAT to .pkl.crutem_gridded_2_pkl.py
- Python reader to load gridded CRUTEM5, mask to land and compute GMST (LAT) with various area-weighting schema, and output to .pkl. Used in area-weighted GMST comparisons.wgs84_area_weighting_vs_cosine_error.py
- Python research code to compare various area-averaging schema.make_contactsheet.py
- Python plotting function to generate a per calendar month contactsheet for a year of data.make_facetgrid.py
- Python plotting function to generate a small multiples plot of all momthly gridded CRUTEM5 maps.make_gif.py
- Python function to generate an animated .gif of monthly quadruple overlay maps.
The first step is to clone the latest glosat-analysis-station-validation code and step into the installed Github directory:
$ git clone https://github.com/patternizer/glosat-analysis-station-validation.git
$ cd glosat-analysis-station-validation
Then create a DATA/ directory and copy to it the required datasets listed in plot_glosat_analysis_vs_stations.py (available on request).
The code is designed to run in an environment using Miniconda3-latest-Linux-x86_64.
$ python merge_netcdfs.py
$ python stations_to_gridded_netcdf.py
$ python crutem_2_pkl.py
$ python lat_2_pkl.py
$ python mat_2_pkl.py
$ python analysis_2_pkl.py
$ python nao_2_pkl.py
$ python soi_2_pkl.py
$ python plot_glosat_analysis_vs_stations_vs_mat.py
$ python plot_glosat_stations_vs_gridded.py (optional)
$ python crutem_gridded_2_pkl.py (optional)
$ python aod_2_pkl.py (optional)
$ python wgs84_area_weighting_vs_cosine_error.py (optional)
$ python plot_stats.py (optional)
$ python plot_contactsheet.py (optional)
$ python plot_facetgrid.py (optional)
$ python make_gif.py (optional)
Due to a Cartopy conflict with recent package versions of Matplotlib and GDAL, it is recommended that you work-around this by creating a new Conda environment and not install GDAL for this code. Dependencies: pandas, matplotlib, cartopy, scipy.
The code is distributed under terms and conditions of the Open Government License.