uv add grafo-ai-tools
A set of tools for easily interacting with LLMs.
Building AI-driven software leans upon a number of utilities, such as prompt building and LLM calling via HTTP requests. Additionally, writing agents and workflows can prove particularly challenging using conventional code structures.
This simple library offers a set of predefined functions for:
- Easy prompting - you need only provide a path
- Calling LLMs - instructor takes care of that for us
- Modifying response models - we use Pydantic (duh)
Additionally, we provide grafo
out of the box for convenient workflow building.
Grafo (see Recommended Docs below) is a library for building executable DAGs where each node contains a coroutine. Since the DAG abstraction fits particularly well into AI-driven building, we have provided the BaseWorkflow
class with the following methods:
task
for LLM callingredirect
to help you manage redirections in yourgrafo
workflows
from ait import AIT
ait = AIT("gpt-5")
path = "./prompt.md"
response = ait.chat(path)
print(response.completion)
print(response.content)
from ait import AIT
from pydantic import BaseModel
class Purchase(BaseModel):
product: str
quantity: int
ait = AIT("gpt-5")
path = "./prompt.md" # PROMPT: {{ message }}
message = "I want to buy 5 apples"
response = ait.asend(response_model=Fruit, path=path, message=message)
from ait import AIT
from pydantic import BaseModel
class Purchase(BaseModel):
product: str
quantity: int
ait = AIT("gpt-5")
path = "./prompt.md" # PROMPT: {{ message }}
message = "I want to buy 5 apples"
available_fruits = ["apple", "banana", "orange"]
FruitModel = ait.inject_types(Purchase, [
("product", Literal[tuple(available_fruits)])
])
response = ait.asend(response_model=Purchase, path=path, message=message)
from ait import AIT, BaseWorkflow, Node
from pydantic import BaseModel
class Purchase(BaseModel):
product: str
quantity: int
class Eval(BaseModel):
is_valid: bool
reasoning: str
humanized_failure_reason: str | None
ait = AIT("gpt-5")
prompts_path = "./"
message = "I want to buy 5 apples"
available_fruits = ["apple", "banana", "orange"]
FruitModel = ait.inject_types(Purchase, [
("product", Literal[tuple(available_fruits)])
])
class PurchaseWorkflow(BaseWorkflow):
def __init__(...):
...
async def run(self, message) -> Purchase:
purchase_node = Node[FruitModel](
uuid="fruit purchase node"
coroutine=self.task
kwargs=dict(
path=f"{prompts_path}/purchase.md"
response_model=FruitModel
message=message
)
)
validation_node = Node[Eval](
uuid="purchase eval node"
coroutine=self.task
kwargs=dict(
path=f"{prompts_path}/eval.md"
response_model=Eval
message=message
purchase=lambda: purchase_node.output
)
)
eval_node.on_after_run = (
self.redirect,
dict(
source_node=purchase_node
validation_node=validation_node
)
)
await purchase_node.connect(validation_node)
executor = TreeExecutor(uuid="Purchase Workflow", roots=[purchase_node])
await executor.run()
if not purchase_node.output or not validation_node.output.is_valid:
raise ValueError("Purchase failed.")
return purchase_node.output
instructor
https://python.useinstructor.com/jinja2
https://jinja.palletsprojects.com/en/stable/pydantic
https://docs.pydantic.dev/latest/grafo
https://github.com/paulomtts/grafo