Skip to content

paulomtts/Grafo-AI-Tools

Repository files navigation

Install

uv add grafo-ai-tools

WHAT

A set of tools for easily interacting with LLMs.

WHY

Building AI-driven software leans upon a number of utilities, such as prompt building and LLM calling via HTTP requests. Additionally, writing agents and workflows can prove particularly challenging using conventional code structures.

HOW

This simple library offers a set of predefined functions for:

  • Easy prompting - you need only provide a path
  • Calling LLMs - instructor takes care of that for us
  • Modifying response models - we use Pydantic (duh)

Additionally, we provide grafo out of the box for convenient workflow building.

About Grafo

Grafo (see Recommended Docs below) is a library for building executable DAGs where each node contains a coroutine. Since the DAG abstraction fits particularly well into AI-driven building, we have provided the BaseWorkflow class with the following methods:

  • task for LLM calling
  • redirect to help you manage redirections in your grafo workflows

Examples

Simple text:

from ait import AIT

ait = AIT("gpt-5")
path = "./prompt.md"
response = ait.chat(path)
print(response.completion)
print(response.content)

Structured response:

from ait import AIT
from pydantic import BaseModel

class Purchase(BaseModel):
    product: str
    quantity: int

ait = AIT("gpt-5")
path = "./prompt.md" # PROMPT: {{ message }}
message = "I want to buy 5 apples"
response = ait.asend(response_model=Fruit, path=path, message=message)

Structured response with model type injection:

from ait import AIT
from pydantic import BaseModel

class Purchase(BaseModel):
    product: str
    quantity: int

ait = AIT("gpt-5")
path = "./prompt.md" # PROMPT: {{ message }}
message = "I want to buy 5 apples"
available_fruits = ["apple", "banana", "orange"]
FruitModel = ait.inject_types(Purchase, [
    ("product", Literal[tuple(available_fruits)])
])
response = ait.asend(response_model=Purchase, path=path, message=message)

Simple workflow:

from ait import AIT, BaseWorkflow, Node
from pydantic import BaseModel

class Purchase(BaseModel):
    product: str
    quantity: int

class Eval(BaseModel):
    is_valid: bool
    reasoning: str
    humanized_failure_reason: str | None

ait = AIT("gpt-5")
prompts_path = "./"
message = "I want to buy 5 apples"
available_fruits = ["apple", "banana", "orange"]
FruitModel = ait.inject_types(Purchase, [
    ("product", Literal[tuple(available_fruits)])
])

class PurchaseWorkflow(BaseWorkflow):
    def __init__(...):
        ...

    async def run(self, message) -> Purchase:
        purchase_node = Node[FruitModel](
            uuid="fruit purchase node"
            coroutine=self.task
            kwargs=dict(
                path=f"{prompts_path}/purchase.md"
                response_model=FruitModel
                message=message
            )
        )
        validation_node = Node[Eval](
            uuid="purchase eval node"
            coroutine=self.task
            kwargs=dict(
                path=f"{prompts_path}/eval.md"
                response_model=Eval
                message=message
                purchase=lambda: purchase_node.output
            )
        )
        eval_node.on_after_run = (
            self.redirect,
            dict(
                source_node=purchase_node
                validation_node=validation_node
            )
        )
        await purchase_node.connect(validation_node)
        executor = TreeExecutor(uuid="Purchase Workflow", roots=[purchase_node])
        await executor.run()

        if not purchase_node.output or not validation_node.output.is_valid:
            raise ValueError("Purchase failed.")

        return purchase_node.output

Recommended Docs

About

Tools for building AI-driven software.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages