Skip to content

pickleton89/cbioportal-mcp

Folders and files

NameName
Last commit message
Last commit date

Latest commit

ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 

Repository files navigation

๐Ÿงฌ cBioPortal MCP Server

Python 3.10+ uv MCP FastMCP Tests Code Coverage

A high-performance, production-ready Model Context Protocol (MCP) server that enables AI assistants to seamlessly interact with cancer genomics data from cBioPortal. Built with modern async Python architecture, enterprise-grade modular design, and BaseEndpoint pattern for maximum reliability, maintainability, and 4.5x faster performance.

๐ŸŒŸ Overview & Key Features

๐Ÿš€ Performance & Architecture

  • โšก 4.5x Performance Boost: Full async implementation with concurrent API operations
  • ๐Ÿ—๏ธ Enterprise Architecture: BaseEndpoint pattern with 60% code duplication elimination
  • ๐Ÿ“ Modular Design: Professional structure with 71% code reduction (1,357 โ†’ 396 lines)
  • ๐Ÿ“ฆ Modern Package Management: uv-based workflow with pyproject.toml
  • ๐Ÿ”„ Concurrent Operations: Bulk fetching of studies and genes with automatic batching

๐Ÿ”ง Enterprise Features

  • โš™๏ธ Multi-layer Configuration: CLI args โ†’ Environment variables โ†’ YAML config โ†’ Defaults
  • ๐Ÿ“‹ Comprehensive Testing: 93 tests across 8 organized test suites with full coverage
  • ๐Ÿ›ก๏ธ Input Validation: Robust parameter validation and error handling
  • ๐Ÿ“Š Pagination Support: Efficient data retrieval with automatic pagination
  • ๐Ÿ”ง Code Quality: Ruff linting, formatting, and comprehensive code quality checks
  • โšก Configurable Performance: Adjustable batch sizes and performance tuning

๐Ÿงฌ Cancer Genomics Capabilities

  • ๐Ÿ” Study Management: Browse, search, and analyze cancer studies
  • ๐Ÿงช Molecular Data: Access mutations, clinical data, and molecular profiles
  • ๐Ÿ“ˆ Bulk Operations: Concurrent fetching of multiple entities
  • ๐Ÿ”Ž Advanced Search: Keyword-based discovery across studies and genes

๐ŸŽ† Recent Quality & Architecture Improvements

๐Ÿš€ Major Refactoring Achievements (2025)

  • ๐Ÿ—๏ธ BaseEndpoint Architecture: Eliminated ~60% code duplication through inheritance-based design
  • ๐Ÿ“ Code Quality Excellence: Comprehensive external review integration with modern linting (Ruff)
  • โš™๏ธ Enhanced Configurability: Gene batch sizes, retry logic, and performance tuning now configurable
  • ๐Ÿ›ก๏ธ Robust Validation: Decorator-based parameter validation and error handling
  • ๐Ÿงช Testing Maturity: 93 comprehensive tests with zero regressions through major refactoring

๐Ÿ“ˆ Production-Ready Status

  • โœ… External Code Review: Professional code quality validation and improvements implemented
  • ๐Ÿ”ง Modern Python Practices: Type checking, linting, formatting, and best practice adherence
  • ๐Ÿ—๏ธ Enterprise Architecture: Modular design with clear separation of concerns
  • ๐Ÿš€ Performance Optimized: 4.5x async improvements with configurable batch processing

๐Ÿง ๐Ÿค– AI-Collaborative Development

This project demonstrates cutting-edge human-AI collaboration in bioinformatics software development:

  • ๐Ÿง  Domain Expertise: 20+ years cancer research experience guided architecture and feature requirements
  • ๐Ÿค– AI Implementation: Advanced code generation, API design, and performance optimization through systematic LLM collaboration
  • ๐Ÿ”„ Quality Assurance: Iterative refinement ensuring professional standards and production reliability
  • ๐Ÿ—๏ธ Architectural Evolution: BaseEndpoint pattern and 60% code duplication elimination through AI-guided refactoring
  • ๐Ÿ“ˆ Innovation Approach: Showcases how domain experts can effectively leverage AI tools to build enterprise-grade bioinformatics platforms

Recent Achievements: External code review integration with comprehensive quality improvements including Ruff configuration, configurable performance settings, and modern Python best practices.

Methodology: This collaborative approach combines deep biological domain knowledge with AI-powered development capabilities, accelerating innovation while maintaining rigorous code quality and scientific accuracy.

๐Ÿš€ Quick Start

Prerequisites

  • Python 3.10+ ๐Ÿ
  • uv (modern package manager) - recommended ๐Ÿ“ฆ
  • Git (optional, for cloning)

โšก Installation & Launch

# Install uv if needed
pipx install uv

# Clone and setup
git clone https://github.com/yourusername/cbioportal-mcp.git
cd cbioportal-mcp
uv sync

# Launch server
uv run cbioportal-mcp

That's it! ๐ŸŽ‰ Your server is running and ready for AI assistant connections.

๐Ÿ“ฆ Installation Options

๐Ÿ”ฅ Option 1: uv (Recommended)

Modern, lightning-fast package management with automatic environment handling:

# Install uv
pipx install uv
# Or with Homebrew: brew install uv

# Clone repository
git clone https://github.com/yourusername/cbioportal-mcp.git
cd cbioportal-mcp

# One-command setup (creates venv + installs dependencies)
uv sync

๐Ÿ Option 2: pip (Traditional)

Standard Python package management approach:

# Create virtual environment
python -m venv cbioportal-mcp-env

# Activate environment
# Windows: cbioportal-mcp-env\Scripts\activate
# macOS/Linux: source cbioportal-mcp-env/bin/activate

# Install dependencies
pip install -e .

โš™๏ธ Configuration

๐ŸŽ›๏ธ Multi-Layer Configuration System

The server supports flexible configuration with priority: CLI args > Environment variables > Config file > Defaults

YAML Configuration ๐Ÿ“„

Create config.yaml for persistent settings:

# cBioPortal MCP Server Configuration
server:
  base_url: "https://www.cbioportal.org/api"
  transport: "stdio"
  client_timeout: 480.0
  
logging:
  level: "INFO"
  format: "%(asctime)s - %(name)s - %(levelname)s - %(message)s"

api:
  rate_limit:
    enabled: false
    requests_per_second: 10
  retry:
    enabled: true
    max_attempts: 3
    backoff_factor: 1.0
  cache:
    enabled: false
    ttl_seconds: 300
  batch_size:
    genes: 100  # Configurable gene batch size for concurrent operations

Environment Variables ๐ŸŒ

export CBIOPORTAL_BASE_URL="https://custom-instance.org/api"
export CBIOPORTAL_LOG_LEVEL="DEBUG"
export CBIOPORTAL_CLIENT_TIMEOUT=600
export CBIOPORTAL_GENE_BATCH_SIZE=50  # Configure gene batch size
export CBIOPORTAL_RETRY_MAX_ATTEMPTS=5

CLI Options ๐Ÿ’ป

# Basic usage
uv run cbioportal-mcp

# Custom configuration
uv run cbioportal-mcp --config config.yaml --log-level DEBUG

# Custom API endpoint
uv run cbioportal-mcp --base-url https://custom-instance.org/api

# Generate example config
uv run cbioportal-mcp --create-example-config

๐Ÿ”Œ Usage & Integration

๐Ÿ–ฅ๏ธ Claude Desktop Integration

Configure in your Claude Desktop MCP settings:

Option 1: Direct Script Path (Recommended)

{
  "mcpServers": {
    "cbioportal": {
      "command": "/path/to/your/project/cbioportal_MCP/.venv/bin/cbioportal-mcp",
      "env": {
        "CBIOPORTAL_LOG_LEVEL": "INFO"
      }
    }
  }
}

Option 2: uv run (Alternative)

{
  "mcpServers": {
    "cbioportal": {
      "command": "uv",
      "args": ["run", "cbioportal-mcp"],
      "cwd": "/path/to/your/project/cbioportal_MCP",
      "env": {
        "CBIOPORTAL_LOG_LEVEL": "INFO"
      }
    }
  }
}

Important Setup Steps:

  1. Replace /path/to/your/project/cbioportal_MCP with your actual project path
  2. Ensure the project is installed in editable mode: uv pip install -e .
  3. Restart Claude Desktop after updating the configuration

๐Ÿ”ง VS Code Integration

Add to your workspace settings:

{
  "mcp.servers": {
    "cbioportal": {
      "command": "uv",
      "args": ["run", "cbioportal-mcp"],
      "cwd": "/path/to/cbioportal-mcp"
    }
  }
}

๐Ÿƒโ€โ™‚๏ธ Command Line Usage

# Development server with debug logging
uv run cbioportal-mcp --log-level DEBUG

# Production server with custom config
uv run cbioportal-mcp --config production.yaml

# Using custom cBioPortal instance
uv run cbioportal-mcp --base-url https://private-instance.org/api

๐Ÿ—๏ธ Architecture

๐Ÿ“ Modern Project Structure

cbioportal-mcp/
โ”œโ”€โ”€ ๐Ÿ“ cbioportal_mcp/           # Main package directory
โ”‚   โ”œโ”€โ”€ ๐Ÿ“Š server.py             # Main MCP server implementation
โ”‚   โ”œโ”€โ”€ ๐ŸŒ api_client.py         # Dedicated HTTP client class
โ”‚   โ”œโ”€โ”€ โš™๏ธ config.py             # Multi-layer configuration system
โ”‚   โ”œโ”€โ”€ ๐Ÿ“‹ constants.py          # Centralized constants
โ”‚   โ”œโ”€โ”€ ๐Ÿ“ endpoints/            # Domain-specific API modules
โ”‚   โ”‚   โ”œโ”€โ”€ ๐Ÿ—๏ธ base.py           # BaseEndpoint pattern (60% duplication reduction)
โ”‚   โ”‚   โ”œโ”€โ”€ ๐Ÿ”ฌ studies.py        # Cancer studies & search
โ”‚   โ”‚   โ”œโ”€โ”€ ๐Ÿงฌ genes.py          # Gene operations & mutations
โ”‚   โ”‚   โ”œโ”€โ”€ ๐Ÿงช samples.py        # Sample data management
โ”‚   โ”‚   โ””โ”€โ”€ ๐Ÿ“ˆ molecular_profiles.py # Molecular & clinical data
โ”‚   โ””โ”€โ”€ ๐Ÿ“ utils/                # Shared utilities
โ”‚       โ”œโ”€โ”€ ๐Ÿ“„ pagination.py     # Efficient pagination logic
โ”‚       โ”œโ”€โ”€ โœ… validation.py     # Input validation
โ”‚       โ””โ”€โ”€ ๐Ÿ“ logging.py        # Logging configuration
โ”œโ”€โ”€ ๐Ÿ“ tests/                    # Comprehensive test suite (93 tests)
โ”œโ”€โ”€ ๐Ÿ“ docs/                     # Documentation
โ”œโ”€โ”€ ๐Ÿ“ scripts/                  # Development utilities
โ””โ”€โ”€ ๐Ÿ“„ pyproject.toml           # Modern Python project config

๐ŸŽฏ Design Principles

  • ๐Ÿ”ง Modular: Clear separation of concerns with domain-specific modules
  • โšก Async-First: Full asynchronous implementation for maximum performance
  • ๐Ÿ—๏ธ BaseEndpoint Pattern: Inheritance-based architecture eliminating 60% code duplication
  • ๐Ÿ›ก๏ธ Robust: Comprehensive input validation and error handling with decorators
  • ๐Ÿงช Testable: 93 tests ensuring reliability and preventing regressions
  • ๐Ÿ”„ Maintainable: Clean code architecture with 71% reduction in complexity
  • ๐Ÿ“ Code Quality: Ruff linting, formatting, and modern Python practices

๐Ÿ› ๏ธ Available Tools

The server provides 12 high-performance tools for AI assistants:

๐Ÿ”ง Tool ๐Ÿ“ Description โšก Features
get_cancer_studies List all available cancer studies ๐Ÿ“„ Pagination, ๐Ÿ” Filtering
search_studies Search studies by keyword ๐Ÿ”Ž Full-text search, ๐Ÿ“Š Sorting
get_study_details Detailed study information ๐Ÿ“ˆ Comprehensive metadata
get_samples_in_study Samples for specific studies ๐Ÿ“„ Paginated results
get_genes Gene information by ID/symbol ๐Ÿท๏ธ Flexible identifiers
search_genes Search genes by keyword ๐Ÿ” Symbol & name search
get_mutations_in_gene Gene mutations in studies ๐Ÿงฌ Mutation details
get_clinical_data Patient clinical information ๐Ÿ‘ฅ Patient-centric data
get_molecular_profiles Study molecular profiles ๐Ÿ“Š Profile metadata
get_multiple_studies ๐Ÿš€ Concurrent study fetching โšก Bulk operations
get_multiple_genes ๐Ÿš€ Concurrent gene retrieval ๐Ÿ“ฆ Automatic batching
get_gene_panels_for_study Gene panels in studies ๐Ÿงฌ Panel information

๐ŸŒŸ Performance Features

  • โšก Concurrent Operations: get_multiple_* methods use asyncio.gather for parallel processing
  • ๐Ÿ“ฆ Smart Batching: Automatic batching for large gene lists
  • ๐Ÿ“„ Efficient Pagination: Async generators for memory-efficient data streaming
  • โฑ๏ธ Performance Metrics: Execution timing and batch count reporting

๐Ÿš€ Performance

๐Ÿ“Š Benchmark Results

Our async implementation delivers significant performance improvements:

๐Ÿƒโ€โ™‚๏ธ Sequential Study Fetching:  1.31 seconds (10 studies)
โšก Concurrent Study Fetching:   0.29 seconds (10 studies)
๐ŸŽฏ Performance Improvement:     4.57x faster!

๐Ÿ”ฅ Async Benefits

  • ๐Ÿš€ 4.5x Faster: Concurrent API requests vs sequential operations
  • ๐Ÿ“ฆ Bulk Processing: Efficient batched operations for multiple entities
  • โฑ๏ธ Non-blocking: Asynchronous I/O prevents request blocking
  • ๐Ÿงฎ Smart Batching: Automatic optimization for large datasets

๐Ÿ’ก Performance Tips

  • Use get_multiple_studies for fetching multiple studies concurrently
  • Leverage get_multiple_genes with automatic batching for gene lists
  • Configure concurrent_batch_size in config for optimal performance
  • Monitor execution metrics included in response metadata

๐Ÿ‘จโ€๐Ÿ’ป Development

๐Ÿ”จ Development Workflow

# Setup development environment
uv sync

# Run tests
uv run pytest

# Run with coverage
uv run pytest --cov=.

# Run specific test file
uv run pytest tests/test_server_lifecycle.py

# Update snapshots
uv run pytest --snapshot-update

# Lint code
uv run ruff check .

# Format code  
uv run ruff format .

๐Ÿงช Testing

Comprehensive test suite with 93 tests across 8 categories:

  • ๐Ÿ”„ test_server_lifecycle.py - Server startup/shutdown & tool registration
  • ๐Ÿ“„ test_pagination.py - Pagination logic & edge cases
  • ๐Ÿš€ test_multiple_entity_apis.py - Concurrent operations & bulk fetching
  • โœ… test_input_validation.py - Parameter validation & error handling
  • ๐Ÿ“ธ test_snapshot_responses.py - API response consistency (syrupy)
  • ๐Ÿ’ป test_cli.py - Command-line interface & argument parsing
  • ๐Ÿ›ก๏ธ test_error_handling.py - Error scenarios & network issues
  • โš™๏ธ test_configuration.py - Configuration system validation

๐Ÿ› ๏ธ Development Tools & Quality Infrastructure

  • ๐Ÿ“ฆ uv: Modern package management (10-100x faster than pip)
  • ๐Ÿงช pytest: Testing framework with async support and 93 comprehensive tests
  • ๐Ÿ“ธ syrupy: Snapshot testing for API response consistency
  • ๐Ÿ” Ruff: Lightning-fast linting, formatting, and code quality enforcement
  • ๐Ÿ“Š pytest-cov: Code coverage reporting and quality metrics
  • ๐Ÿ—๏ธ BaseEndpoint: Inheritance pattern eliminating 60% code duplication
  • โš™๏ธ Type Checking: Comprehensive type annotations for better code safety
  • ๐Ÿ›ก๏ธ Validation Decorators: Automatic parameter validation and error handling

๐Ÿค Contributing

  1. ๐Ÿด Fork the repository
  2. ๐ŸŒฟ Create a feature branch (git checkout -b feature/amazing-feature)
  3. โœ… Test your changes (uv run pytest)
  4. ๐Ÿ“ Commit with clear messages (git commit -m 'Add amazing feature')
  5. ๐Ÿš€ Push to branch (git push origin feature/amazing-feature)
  6. ๐Ÿ”„ Create a Pull Request

๐Ÿ”ง Troubleshooting

๐Ÿšจ Common Issues

Server Fails to Start

# Check Python version
python --version  # Should be 3.10+

# Verify dependencies
uv sync

# Check for conflicts
uv run python -c "import mcp, httpx, fastmcp; print('Dependencies OK')"

Claude Desktop Connection Issues

  • โœ… Use direct script path (Option 1) for most reliable connection
  • โœ… Verify paths in MCP configuration are absolute (no ~ or relative paths)
  • โœ… Install in editable mode: Run uv pip install -e . in project directory
  • โœ… Ensure the virtual environment .venv/bin/cbioportal-mcp script exists
  • โœ… For Option 2: Check that uv is in your system PATH and cwd points to project directory
  • โœ… Review Claude Desktop logs for detailed errors

Performance Issues

  • ๐Ÿ”ง Increase concurrent_batch_size in config
  • ๐Ÿ”ง Adjust max_concurrent_requests for your system
  • ๐Ÿ”ง Use get_multiple_* methods for bulk operations
  • ๐Ÿ”ง Monitor network latency to cBioPortal API

Configuration Problems

# Generate example config
uv run cbioportal-mcp --create-example-config

# Validate configuration
uv run cbioportal-mcp --config your-config.yaml --log-level DEBUG

# Check environment variables
env | grep CBIOPORTAL

๐ŸŒ API Connectivity

# Test cBioPortal API accessibility
curl https://www.cbioportal.org/api/cancer-types

# Test with custom instance
curl https://your-instance.org/api/studies

๐Ÿ’ก Examples & Use Cases

๐Ÿ” Research Queries

"What cancer studies are available for breast cancer research?"
"Search for melanoma studies with genomic data"
"Get mutation data for TP53 in lung cancer studies"
"Find clinical data for patients in the TCGA-BRCA study"
"What molecular profiles are available for pediatric brain tumors?"

๐Ÿงฌ Genomic Analysis

"Compare mutation frequencies between two cancer studies"
"Get all genes in the DNA repair pathway for ovarian cancer"
"Find studies with both RNA-seq and mutation data"
"What are the most frequently mutated genes in glioblastoma?"

๐Ÿ“Š Bulk Operations

"Fetch data for multiple cancer studies concurrently"
"Get information for a list of cancer genes efficiently"
"Compare clinical characteristics across multiple studies"
"Retrieve molecular profiles for several cancer types"

๐Ÿ“œ License

This project is licensed under the MIT License - see the LICENSE file for details.

๐Ÿ™ Acknowledgments

  • ๐Ÿงฌ cBioPortal - Open-access cancer genomics data platform
  • ๐Ÿ”— Model Context Protocol - Enabling seamless AI-tool interactions
  • โšก FastMCP - High-performance MCP server framework
  • ๐Ÿ“ฆ uv - Modern Python package management
  • ๐Ÿค– AI Collaboration - Demonstrating the power of human-AI partnership in scientific software development

๐ŸŒŸ Production-ready bioinformatics platform built through innovative human-AI collaboration! ๐Ÿงฌโœจ

Demonstrating the power of domain expertise + AI-assisted development for enterprise-grade scientific software.

About

A FastMCP server for cBioPortal API with async support for improved performance

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •  

Languages