Skip to content

Used Python web mapping libraries along with other data science libraries to compute and visualize spatial data in the web form in a cloud environment.

Notifications You must be signed in to change notification settings

prachisarode95/Climate-Risk-UHI-Analysis

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

118 Commits
 
 
 
 

Repository files navigation

Urban Heat Island Detection & Cooling Infrastructure Assessment

Project Summary

Urban Heat Islands (UHI) significantly impact urban livability, energy consumption, and public health.
This project implements an end-to-end automated geospatial pipeline to detect UHI hotspots and evaluate cooling infrastructure using satellite-derived Land Surface Temperature (LST) and OpenStreetMap spatial features.


Technical Objectives

  • Automate LST extraction and preprocessing from Landsat 9
  • Perform spatial zonal statistics on cooling infrastructure
  • Classify urban heat zones using unsupervised machine learning (K-Means)
  • Produce reproducible geospatial outputs for GIS workflows

Data Sources

Dataset Source
Land Surface Temperature (LST) Landsat 9 via Google Earth Engine
Green spaces & Water bodies OpenStreetMap (Overpass API)
Administrative Boundary Pune City GeoJSON

Technology Stack

Category Tools / Libraries
Remote Sensing Google Earth Engine, Rasterio
Spatial Analysis GeoPandas, RasterStats, Shapely
Machine Learning Scikit-learn (K-Means clustering)
Data Handling Pandas, NumPy
Visualization Matplotlib
Automation Python scripting pipeline
Environment Google Colab / Python

Pipeline Architecture

Phase 1 – Study Area & Feature Extraction

  • Defined Pune city boundary using GeoJSON
  • Extracted green spaces and water bodies using Overpass API

Phase 2 – Land Surface Temperature Processing

  • Retrieved Landsat 9 LST data from Google Earth Engine
  • Cleaned raster, masked invalid values, and clipped to city boundary

Phase 3 – Cooling Feature Zonal Statistics

  • Computed mean LST for each green and water feature
  • Enriched vector datasets with temperature metrics

Phase 4 – Urban Heat Island Classification

  • Applied K-Means clustering on cleaned LST raster
  • Classified the city into thermal zones (cool → extreme heat)

Phase 5 – Visualization & Export

  • Generated heatmaps and spatial overlays
  • Exported GeoTIFF and GeoJSON for GIS integration

Repository Structure

/Urban_Heat_Island_Detection
├── uhi.py                           # Main Python script
├── UHID.md                          # Project documentation
├── UHI
│   ├── Raw/
│   │   ├── pune_boundary.geojson    # Study area boundary
│   ├── Outputs/
│   │   ├── pune_green_water_fulltags.geojson   # Green & water features
│   │   ├── pune_cooling_with_LST.geojson       # Features enriched with LST
│   │   ├── LST.tif                            # Original LST raster
│   │   ├── LST_cleaned.tif                    # Preprocessed/masked raster
│   │   └── kmeans_uhi_clusters.tif            # Classified UHI zones
│   └── PNG/
│       ├── masked_LST_cleaned.png             # Cleaned LST preview
│       └── phase4_kmeans_clusters.png         # UHI clustering visualization

Key Outputs

File Description
kmeans_uhi_clusters.tif Classified UHI thermal zones raster
pune_cooling_with_LST.geojson Cooling features enriched with zonal mean temperature
masked_LST_cleaned.png Cleaned LST visualization
phase4_kmeans_clusters.png UHI clustering heatmap

How to Run

# Clone repository
git clone https://github.com/prachisarode95/Urban-Heat-Island-Detection-Pipeline
cd Urban-Heat-Island-Detection-Pipeline

# Install dependencies
pip install -r requirements.txt

# Run automation pipeline
python scripts/uhi.py

Requirements.txt

geemap
geopandas
rasterio
numpy
pandas
scikit-learn
rasterstats
matplotlib
shapely

Key Outcomes

File Description
kmeans_uhi_clusters.tif Classified UHI thermal zones raster
pune_cooling_with_LST.geojson Cooling features enriched with zonal mean temperature
masked_LST_cleaned.png Cleaned LST visualization
phase4_kmeans_clusters.png UHI clustering heatmap

About

Used Python web mapping libraries along with other data science libraries to compute and visualize spatial data in the web form in a cloud environment.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages