Tjark Behrens1,
Anton Obukhov3,
Bingxin Ke1,
Fabio Tosi2,
Matteo Poggi2,
Konrad Schindler1
1ETH Zurich |
2University of Bologna |
3Huawei Bayer Lab
This repository is the official implementation of the paper titled "StereoSpace: Depth-Free Synthesis of Stereo Geometry via End-to-End Diffusion in a Canonical Space".
Create and activate the environment:
git clone https://github.com/prs-eth/stereospace.git
cd stereospace
python -m venv ~/venv_stereospace
source ~/venv_stereospace/bin/activate
pip install -r requirements.txtpython inference.pyThis will:
- ⬇️ Download the necessary checkpoints. If you are prompted to log in, please provide a read access token from Hugging Face → Settings → Access Tokens. When asked 'Add token as git credential? (Y/n)', select 'n'.
- 👀 Create stereo from input images; without specifying
--input, it will use theexample_imagesdirectory. - 💾 Save predictions to an output folder.
You can also pass the following arguments:
--input INPUT: Input image or a directory path, default./example_images;--output OUTPUT: Output directory, default./outputs;--baseline BASELINE: Baseline, default0.15(15 cm);--batch_size BATCH_SIZE: Batch size when processing a folder of images, default is 1;--src_intrinsics,--tgt_intrinsics: Camera intrinsics for precise control of the FOV, default is a standard camera.
| Problem | Solution |
|---|---|
(pip) Errors installing requirements via pip install -r requirements.txt |
python -m pip install --upgrade pip |
Please cite our paper:
@misc{behrens2025stereospace,
title = {StereoSpace: Depth-Free Synthesis of Stereo Geometry via End-to-End Diffusion in a Canonical Space},
author = {Tjark Behrens and Anton Obukhov and Bingxin Ke and Fabio Tosi and Matteo Poggi and Konrad Schindler},
year = {2025},
eprint = {2512.10959},
archivePrefix= {arXiv},
primaryClass = {cs.CV},
url = {https://arxiv.org/abs/2512.10959},
}The code and models of this work are licensed under the MIT License. By downloading and using the code and model you agree to the terms in LICENSE.

