Skip to content

prs-eth/stereospace

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

StereoSpace: Depth-Free Synthesis of Stereo Geometry via End-to-End Diffusion in a Canonical Space

Tjark Behrens1, Anton Obukhov3, Bingxin Ke1, Fabio Tosi2, Matteo Poggi2, Konrad Schindler1
1ETH Zurich   |   2University of Bologna   |   3Huawei Bayer Lab

This repository is the official implementation of the paper titled "StereoSpace: Depth-Free Synthesis of Stereo Geometry via End-to-End Diffusion in a Canonical Space".

Quick Start

Environment & Requirements

Create and activate the environment:

git clone https://github.com/prs-eth/stereospace.git
cd stereospace
python -m venv ~/venv_stereospace
source ~/venv_stereospace/bin/activate
pip install -r requirements.txt

Inference

python inference.py

This will:

  • ⬇️ Download the necessary checkpoints. If you are prompted to log in, please provide a read access token from Hugging Face → Settings → Access Tokens. When asked 'Add token as git credential? (Y/n)', select 'n'.
  • 👀 Create stereo from input images; without specifying --input, it will use the example_images directory.
  • 💾 Save predictions to an output folder.

You can also pass the following arguments:

  • --input INPUT: Input image or a directory path, default ./example_images;
  • --output OUTPUT: Output directory, default ./outputs;
  • --baseline BASELINE: Baseline, default 0.15 (15 cm);
  • --batch_size BATCH_SIZE: Batch size when processing a folder of images, default is 1;
  • --src_intrinsics, --tgt_intrinsics: Camera intrinsics for precise control of the FOV, default is a standard camera.

Troubleshooting

Problem Solution
(pip) Errors installing requirements via pip install -r requirements.txt python -m pip install --upgrade pip

Citation

Please cite our paper:

@misc{behrens2025stereospace,
  title        = {StereoSpace: Depth-Free Synthesis of Stereo Geometry via End-to-End Diffusion in a Canonical Space},
  author       = {Tjark Behrens and Anton Obukhov and Bingxin Ke and Fabio Tosi and Matteo Poggi and Konrad Schindler},
  year         = {2025},
  eprint       = {2512.10959},
  archivePrefix= {arXiv},
  primaryClass = {cs.CV},
  url          = {https://arxiv.org/abs/2512.10959},
}

License

The code and models of this work are licensed under the MIT License. By downloading and using the code and model you agree to the terms in LICENSE.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages