|
| 1 | +import time |
| 2 | + |
| 3 | +import sparse |
| 4 | + |
| 5 | +import numpy as np |
| 6 | +import scipy.sparse as sps |
| 7 | + |
| 8 | +LEN = 100000 |
| 9 | +DENSITY = 0.000001 |
| 10 | +ITERS = 3 |
| 11 | +rng = np.random.default_rng(0) |
| 12 | + |
| 13 | + |
| 14 | +def benchmark(func, info, args): |
| 15 | + print(info) |
| 16 | + start = time.time() |
| 17 | + for _ in range(ITERS): |
| 18 | + func(*args) |
| 19 | + elapsed = time.time() - start |
| 20 | + print(f"Took {elapsed / ITERS} s.\n") |
| 21 | + |
| 22 | + |
| 23 | +if __name__ == "__main__": |
| 24 | + print("SpMv_add Example:\n") |
| 25 | + |
| 26 | + A_sps = sps.random(LEN - 10, LEN, format="csc", density=DENSITY, random_state=rng) * 10 |
| 27 | + x_sps = rng.random((LEN, 1)) * 10 |
| 28 | + y_sps = rng.random((LEN - 10, 1)) * 10 |
| 29 | + |
| 30 | + # Finch |
| 31 | + with sparse.Backend(backend=sparse.BackendType.Finch): |
| 32 | + A = sparse.asarray(A_sps) |
| 33 | + x = sparse.asarray(np.array(x_sps, order="C")) |
| 34 | + y = sparse.asarray(np.array(y_sps, order="C")) |
| 35 | + |
| 36 | + @sparse.compiled |
| 37 | + def spmv_finch(A, x, y): |
| 38 | + return sparse.sum(A[:, None, :] * sparse.permute_dims(x, (1, 0))[None, :, :], axis=-1) + y |
| 39 | + |
| 40 | + # Compile |
| 41 | + result_finch = spmv_finch(A, x, y) |
| 42 | + assert sparse.nonzero(result_finch)[0].size > 5 |
| 43 | + # Benchmark |
| 44 | + benchmark(spmv_finch, info="Finch", args=[A, x, y]) |
| 45 | + |
| 46 | + # Numba |
| 47 | + with sparse.Backend(backend=sparse.BackendType.Numba): |
| 48 | + A = sparse.asarray(A_sps, format="csc") |
| 49 | + x = x_sps |
| 50 | + y = y_sps |
| 51 | + |
| 52 | + def spmv_numba(A, x, y): |
| 53 | + return A @ x + y |
| 54 | + |
| 55 | + # Compile |
| 56 | + result_numba = spmv_numba(A, x, y) |
| 57 | + assert sparse.nonzero(result_numba)[0].size > 5 |
| 58 | + # Benchmark |
| 59 | + benchmark(spmv_numba, info="Numba", args=[A, x, y]) |
| 60 | + |
| 61 | + # SciPy |
| 62 | + def spmv_scipy(A, x, y): |
| 63 | + return A @ x + y |
| 64 | + |
| 65 | + A = A_sps |
| 66 | + x = x_sps |
| 67 | + y = y_sps |
| 68 | + |
| 69 | + result_scipy = spmv_scipy(A, x, y) |
| 70 | + # Benchmark |
| 71 | + benchmark(spmv_scipy, info="SciPy", args=[A, x, y]) |
| 72 | + |
| 73 | + np.testing.assert_allclose(result_numba, result_scipy) |
| 74 | + np.testing.assert_allclose(result_finch.todense(), result_numba) |
| 75 | + np.testing.assert_allclose(result_finch.todense(), result_scipy) |
0 commit comments