@@ -3033,14 +3033,15 @@ class SkewNormal(Continuous):
3033
3033
r"""
3034
3034
Univariate skew-normal log-likelihood.
3035
3035
3036
- The pdf of this distribution is
3036
+ The pdf of this distribution is
3037
3037
3038
3038
.. math::
3039
3039
3040
3040
f(x \mid \mu, \tau, \alpha) =
3041
3041
2 \Phi((x-\mu)\sqrt{\tau}\alpha) \phi(x,\mu,\tau)
3042
3042
3043
3043
.. plot::
3044
+ :context: close-figs
3044
3045
3045
3046
import matplotlib.pyplot as plt
3046
3047
import numpy as np
@@ -3071,13 +3072,15 @@ class SkewNormal(Continuous):
3071
3072
3072
3073
Parameters
3073
3074
----------
3074
- mu: float
3075
+ mu : tensor_like of float, default 0
3075
3076
Location parameter.
3076
- sigma: float
3077
+ sigma : tensor_like of float, optional
3077
3078
Scale parameter (sigma > 0).
3078
- tau: float
3079
+ Defaults to 1.
3080
+ tau : tensor_like of float, optional
3079
3081
Alternative scale parameter (tau > 0).
3080
- alpha: float
3082
+ Defaults to 1.
3083
+ alpha : tensor_like of float, default 1
3081
3084
Skewness parameter.
3082
3085
3083
3086
Notes
@@ -3114,9 +3117,9 @@ def logp(value, mu, sigma, alpha):
3114
3117
3115
3118
Parameters
3116
3119
----------
3117
- value: numeric
3120
+ value : tensor_like of float
3118
3121
Value(s) for which log-probability is calculated. If the log probabilities for multiple
3119
- values are desired the values must be provided in a numpy array or Aesara tensor
3122
+ values are desired the values must be provided in a numpy array or Aesara tensor.
3120
3123
3121
3124
Returns
3122
3125
-------
@@ -3134,7 +3137,7 @@ def logp(value, mu, sigma, alpha):
3134
3137
3135
3138
class Triangular (BoundedContinuous ):
3136
3139
r"""
3137
- Continuous Triangular log-likelihood
3140
+ Continuous Triangular log-likelihood.
3138
3141
3139
3142
The pdf of this distribution is
3140
3143
@@ -3149,6 +3152,7 @@ class Triangular(BoundedContinuous):
3149
3152
\end{cases}
3150
3153
3151
3154
.. plot::
3155
+ :context: close-figs
3152
3156
3153
3157
import matplotlib.pyplot as plt
3154
3158
import numpy as np
@@ -3179,11 +3183,11 @@ class Triangular(BoundedContinuous):
3179
3183
3180
3184
Parameters
3181
3185
----------
3182
- lower: float
3186
+ lower : tensor_like of float, default 0
3183
3187
Lower limit.
3184
- c: float
3185
- mode
3186
- upper: float
3188
+ c : tensor_like of float, default 0.5
3189
+ Mode.
3190
+ upper : tensor_like of float, default 1
3187
3191
Upper limit.
3188
3192
"""
3189
3193
@@ -3211,7 +3215,7 @@ def logcdf(value, lower, c, upper):
3211
3215
3212
3216
Parameters
3213
3217
----------
3214
- value: numeric or np.ndarray or aesara.tensor
3218
+ value : tensor_like of float
3215
3219
Value(s) for which log CDF is calculated. If the log CDF for multiple
3216
3220
values are desired the values must be provided in a numpy array or Aesara tensor.
3217
3221
@@ -3243,7 +3247,7 @@ def logcdf(value, lower, c, upper):
3243
3247
3244
3248
class Gumbel (Continuous ):
3245
3249
r"""
3246
- Univariate Gumbel log-likelihood
3250
+ Univariate Gumbel log-likelihood.
3247
3251
3248
3252
The pdf of this distribution is
3249
3253
@@ -3258,6 +3262,7 @@ class Gumbel(Continuous):
3258
3262
z = \frac{x - \mu}{\beta}.
3259
3263
3260
3264
.. plot::
3265
+ :context: close-figs
3261
3266
3262
3267
import matplotlib.pyplot as plt
3263
3268
import numpy as np
@@ -3284,9 +3289,9 @@ class Gumbel(Continuous):
3284
3289
3285
3290
Parameters
3286
3291
----------
3287
- mu: float
3292
+ mu : tensor_like of float
3288
3293
Location parameter.
3289
- beta: float
3294
+ beta : tensor_like of float
3290
3295
Scale parameter (beta > 0).
3291
3296
"""
3292
3297
rv_op = gumbel
@@ -3324,7 +3329,7 @@ def logcdf(
3324
3329
3325
3330
Parameters
3326
3331
----------
3327
- value: numeric or np.ndarray or aesara.tensor
3332
+ value : tensor_like of float
3328
3333
Value(s) for which log CDF is calculated. If the log CDF for multiple
3329
3334
values are desired the values must be provided in a numpy array or Aesara tensor.
3330
3335
@@ -3492,6 +3497,7 @@ class Logistic(Continuous):
3492
3497
\frac{\exp\left(-\frac{x - \mu}{s}\right)}{s \left(1 + \exp\left(-\frac{x - \mu}{s}\right)\right)^2}
3493
3498
3494
3499
.. plot::
3500
+ :context: close-figs
3495
3501
3496
3502
import matplotlib.pyplot as plt
3497
3503
import numpy as np
@@ -3518,9 +3524,9 @@ class Logistic(Continuous):
3518
3524
3519
3525
Parameters
3520
3526
----------
3521
- mu: float
3527
+ mu : tensor_like of float, default 0
3522
3528
Mean.
3523
- s: float
3529
+ s : tensor_like of float, default 1
3524
3530
Scale (s > 0).
3525
3531
"""
3526
3532
@@ -3545,7 +3551,7 @@ def logcdf(value, mu, s):
3545
3551
3546
3552
Parameters
3547
3553
----------
3548
- value: numeric or np.ndarray or aesara.tensor
3554
+ value : tensor_like of float
3549
3555
Value(s) for which log CDF is calculated. If the log CDF for multiple
3550
3556
values are desired the values must be provided in a numpy array or Aesara tensor.
3551
3557
@@ -3590,6 +3596,7 @@ class LogitNormal(UnitContinuous):
3590
3596
3591
3597
3592
3598
.. plot::
3599
+ :context: close-figs
3593
3600
3594
3601
import matplotlib.pyplot as plt
3595
3602
import numpy as np
@@ -3614,12 +3621,14 @@ class LogitNormal(UnitContinuous):
3614
3621
3615
3622
Parameters
3616
3623
----------
3617
- mu: float
3624
+ mu : tensor_like of float, default 0
3618
3625
Location parameter.
3619
- sigma: float
3626
+ sigma : tensor_like of float, optional
3620
3627
Scale parameter (sigma > 0).
3621
- tau: float
3628
+ Defaults to 1.
3629
+ tau : tensor_like of float, optional
3622
3630
Scale parameter (tau > 0).
3631
+ Defaults to 1.
3623
3632
"""
3624
3633
rv_op = logit_normal
3625
3634
@@ -3646,9 +3655,9 @@ def logp(value, mu, sigma):
3646
3655
3647
3656
Parameters
3648
3657
----------
3649
- value: numeric
3658
+ value : tensor_like of float
3650
3659
Value(s) for which log-probability is calculated. If the log probabilities for multiple
3651
- values are desired the values must be provided in a numpy array or Aesara tensor
3660
+ values are desired the values must be provided in a numpy array or Aesara tensor.
3652
3661
3653
3662
Returns
3654
3663
-------
0 commit comments