@@ -291,10 +291,10 @@ class Uniform(BoundedContinuous):
291
291
292
292
Parameters
293
293
----------
294
- lower : float, optional
295
- Lower limit. Defaults to 0.
296
- upper : float, optional
297
- Upper limit. Defaults to 1.
294
+ lower : tensor_like of float, default 0
295
+ Lower limit.
296
+ upper : tensor_like of float, default 1
297
+ Upper limit.
298
298
"""
299
299
rv_op = uniform
300
300
bound_args_indices = (3 , 4 ) # Lower, Upper
@@ -319,13 +319,9 @@ def logcdf(value, lower, upper):
319
319
320
320
Parameters
321
321
----------
322
- value : numeric or ndarray or TensorVariable
322
+ value : tensor_like of float
323
323
Value(s) for which log CDF is calculated. If the log CDF for multiple
324
- values are desired the values must be provided in a numpy array or `TensorVariable`.
325
- lower : float, optional
326
- Lower limit. Defaults to 0.
327
- upper : float, optional
328
- Upper limit. Defaults to 1.
324
+ values are desired the values must be provided in a numpy array or Aesara tensor.
329
325
330
326
Returns
331
327
-------
@@ -385,7 +381,7 @@ def logp(value):
385
381
----------
386
382
value : tensor_like of float
387
383
Value(s) for which log-probability is calculated. If the log probabilities for multiple
388
- values are desired the values must be provided in a numpy array or Aesara tensor
384
+ values are desired the values must be provided in a numpy array or Aesara tensor.
389
385
390
386
Returns
391
387
-------
@@ -453,7 +449,7 @@ def logp(value):
453
449
----------
454
450
value : tensor_like of float
455
451
Value(s) for which log-probability is calculated. If the log probabilities for multiple
456
- values are desired the values must be provided in a numpy array or Aesara tensor
452
+ values are desired the values must be provided in a numpy array or Aesara tensor.
457
453
458
454
Returns
459
455
-------
@@ -575,11 +571,7 @@ def logcdf(value, mu, sigma):
575
571
----------
576
572
value : tensor_like of float
577
573
Value(s) for which log CDF is calculated. If the log CDF for multiple
578
- values are desired the values must be provided in a numpy array or `TensorVariable`.
579
- mu : tensor_like of float
580
- Mean.
581
- sigma : tensor_like of float
582
- Standard deviation (sigma > 0).
574
+ values are desired the values must be provided in a numpy array or Aesara tensor.
583
575
584
576
Returns
585
577
-------
@@ -1471,7 +1463,7 @@ class Exponential(PositiveContinuous):
1471
1463
Parameters
1472
1464
----------
1473
1465
lam : tensor_like of float
1474
- Rate or inverse scale (``lam`` > 0)
1466
+ Rate or inverse scale (``lam`` > 0).
1475
1467
"""
1476
1468
rv_op = exponential
1477
1469
@@ -1652,12 +1644,12 @@ class AsymmetricLaplace(Continuous):
1652
1644
1653
1645
Parameters
1654
1646
----------
1655
- b: float
1656
- Scale parameter (b > 0)
1657
- kappa: float
1658
- Symmetry parameter (kappa > 0)
1659
- mu: float
1660
- Location parameter
1647
+ b : tensor_like of float
1648
+ Scale parameter (b > 0).
1649
+ kappa : tensor_like of float
1650
+ Symmetry parameter (kappa > 0).
1651
+ mu : tensor_like of float, default 0
1652
+ Location parameter.
1661
1653
1662
1654
See Also:
1663
1655
--------
@@ -1692,9 +1684,9 @@ def logp(value, b, kappa, mu):
1692
1684
1693
1685
Parameters
1694
1686
----------
1695
- value: numeric
1687
+ value : tensor_like of float
1696
1688
Value(s) for which log-probability is calculated. If the log probabilities for multiple
1697
- values are desired the values must be provided in a numpy array or Aesara tensor
1689
+ values are desired the values must be provided in a numpy array or Aesara tensor.
1698
1690
1699
1691
Returns
1700
1692
-------
@@ -2345,7 +2337,7 @@ def logcdf(value, alpha, inv_beta):
2345
2337
value : tensor_like of float
2346
2338
Value(s) for which log CDF is calculated. If the log CDF for
2347
2339
multiple values are desired the values must be provided in a numpy
2348
- array or `TensorVariable` .
2340
+ array or Aesara tensor .
2349
2341
2350
2342
Returns
2351
2343
-------
@@ -2641,7 +2633,7 @@ def logcdf(value, alpha, beta):
2641
2633
2642
2634
Parameters
2643
2635
----------
2644
- value: numeric or np.ndarray or aesara.tensor
2636
+ value : tensor_like of float
2645
2637
Value(s) for which log CDF is calculated. If the log CDF for multiple
2646
2638
values are desired the values must be provided in a numpy array or Aesara tensor.
2647
2639
@@ -3371,6 +3363,7 @@ class Rice(PositiveContinuous):
3371
3363
\left({\frac {-(x^{2}+\nu ^{2})}{2\sigma ^{2}}}\right)I_{0}\left({\frac {x\nu }{\sigma ^{2}}}\right),
3372
3364
3373
3365
.. plot::
3366
+ :context: close-figs
3374
3367
3375
3368
import matplotlib.pyplot as plt
3376
3369
import numpy as np
@@ -3397,12 +3390,12 @@ class Rice(PositiveContinuous):
3397
3390
3398
3391
Parameters
3399
3392
----------
3400
- nu: float
3401
- noncentrality parameter.
3402
- sigma: float
3393
+ nu : tensor_like of float, optional
3394
+ Noncentrality parameter (only required if b is not specified) .
3395
+ sigma : tensor_like of float, default 1
3403
3396
scale parameter.
3404
- b: float
3405
- shape parameter (alternative to nu).
3397
+ b : tensor_like of float, optional
3398
+ Shape parameter (alternative to nu, only required if nu is not specified ).
3406
3399
3407
3400
Notes
3408
3401
-----
@@ -3463,9 +3456,9 @@ def logp(value, b, sigma):
3463
3456
3464
3457
Parameters
3465
3458
----------
3466
- value: numeric
3459
+ value : tensor_like of float
3467
3460
Value(s) for which log-probability is calculated. If the log probabilities for multiple
3468
- values are desired the values must be provided in a numpy array or Aesara tensor
3461
+ values are desired the values must be provided in a numpy array or Aesara tensor.
3469
3462
3470
3463
Returns
3471
3464
-------
@@ -3724,6 +3717,7 @@ class Interpolated(BoundedContinuous):
3724
3717
plain array-like objects, so they are constant and cannot be sampled.
3725
3718
3726
3719
.. plot::
3720
+ :context: close-figs
3727
3721
3728
3722
import matplotlib.pyplot as plt
3729
3723
import numpy as np
@@ -3751,11 +3745,11 @@ class Interpolated(BoundedContinuous):
3751
3745
3752
3746
Parameters
3753
3747
----------
3754
- x_points: array-like
3755
- A monotonically growing list of values. Must be non-symbolic
3756
- pdf_points: array-like
3748
+ x_points : array_like
3749
+ A monotonically growing list of values. Must be non-symbolic.
3750
+ pdf_points : array_like
3757
3751
Probability density function evaluated on lattice ``x_points``. Must
3758
- be non-symbolic
3752
+ be non-symbolic.
3759
3753
"""
3760
3754
3761
3755
rv_op = interpolated
@@ -3805,9 +3799,9 @@ def logp(value, x_points, pdf_points, cdf_points):
3805
3799
3806
3800
Parameters
3807
3801
----------
3808
- value: numeric
3802
+ value : tensor_like of float
3809
3803
Value(s) for which log-probability is calculated. If the log probabilities for multiple
3810
- values are desired the values must be provided in a numpy array or Aesara tensor
3804
+ values are desired the values must be provided in a numpy array or Aesara tensor.
3811
3805
3812
3806
Returns
3813
3807
-------
@@ -3860,6 +3854,7 @@ class Moyal(Continuous):
3860
3854
z = \frac{x-\mu}{\sigma}.
3861
3855
3862
3856
.. plot::
3857
+ :context: close-figs
3863
3858
3864
3859
import matplotlib.pyplot as plt
3865
3860
import numpy as np
@@ -3885,9 +3880,9 @@ class Moyal(Continuous):
3885
3880
3886
3881
Parameters
3887
3882
----------
3888
- mu: float
3883
+ mu : tensor_like of float, default 0
3889
3884
Location parameter.
3890
- sigma: float
3885
+ sigma : tensor_like of float, default 1
3891
3886
Scale parameter (sigma > 0).
3892
3887
"""
3893
3888
rv_op = moyal
@@ -3914,9 +3909,9 @@ def logp(value, mu, sigma):
3914
3909
3915
3910
Parameters
3916
3911
----------
3917
- value: numeric
3912
+ value : tensor_like of float
3918
3913
Value(s) for which log-probability is calculated. If the log probabilities for multiple
3919
- values are desired the values must be provided in a numpy array or Aesara tensor
3914
+ values are desired the values must be provided in a numpy array or Aesara tensor.
3920
3915
3921
3916
Returns
3922
3917
-------
@@ -3933,7 +3928,7 @@ def logcdf(value, mu, sigma):
3933
3928
3934
3929
Parameters
3935
3930
----------
3936
- value: numeric or np.ndarray or aesara.tensor
3931
+ value : tensor_like of float
3937
3932
Value(s) for which log CDF is calculated. If the log CDF for multiple
3938
3933
values are desired the values must be provided in a numpy array or Aesara tensor.
3939
3934
@@ -4044,6 +4039,7 @@ class PolyaGamma(PositiveContinuous):
4044
4039
random variable with shape parameter ``h`` and scale parameter ``1``.
4045
4040
4046
4041
.. plot::
4042
+ :context: close-figs
4047
4043
4048
4044
import matplotlib.pyplot as plt
4049
4045
import numpy as np
@@ -4068,9 +4064,9 @@ class PolyaGamma(PositiveContinuous):
4068
4064
4069
4065
Parameters
4070
4066
----------
4071
- h: float, optional
4067
+ h : tensor_like of float, default 1
4072
4068
The shape parameter of the distribution (h > 0).
4073
- z: float, optional
4069
+ z : tensor_like of float, default 0
4074
4070
The exponential tilting parameter of the distribution.
4075
4071
4076
4072
Examples
@@ -4091,7 +4087,7 @@ class PolyaGamma(PositiveContinuous):
4091
4087
108.504 (2013): 1339-1349.
4092
4088
.. [2] Windle, Jesse, Nicholas G. Polson, and James G. Scott.
4093
4089
"Sampling Polya-Gamma random variates: alternate and approximate
4094
- techniques." arXiv preprint arXiv:1405.0506 (2014)
4090
+ techniques." arXiv preprint arXiv:1405.0506 (2014).
4095
4091
.. [3] Luc Devroye. "On exact simulation algorithms for some distributions
4096
4092
related to Jacobi theta functions." Statistics & Probability Letters,
4097
4093
Volume 79, Issue 21, (2009): 2251-2259.
@@ -4126,7 +4122,7 @@ def logp(value, h, z):
4126
4122
4127
4123
Parameters
4128
4124
----------
4129
- value: numeric
4125
+ value : tensor_like of float
4130
4126
Value(s) for which log-probability is calculated. If the log
4131
4127
probabilities for multiple values are desired the values must be
4132
4128
provided in a numpy array.
@@ -4154,7 +4150,7 @@ def logcdf(value, h, z):
4154
4150
4155
4151
Parameters
4156
4152
----------
4157
- value: numeric or np.ndarray or `TensorVariable`
4153
+ value : tensor_like of float
4158
4154
Value(s) for which log CDF is calculated. If the log CDF for multiple
4159
4155
values are desired the values must be provided in a numpy array.
4160
4156
0 commit comments