Skip to content

Commit 77cab6e

Browse files
authored
Update discrete.py
Updated the docstrings for better clarity. Replaced "log-likelihood" with "distribution" to accurately describe the functionality, as the class provides more than just log-likelihood, including mean, variance, covariance.
1 parent 40001d2 commit 77cab6e

File tree

1 file changed

+8
-8
lines changed

1 file changed

+8
-8
lines changed

pymc/distributions/discrete.py

Lines changed: 8 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -71,7 +71,7 @@
7171

7272
class Binomial(Discrete):
7373
R"""
74-
Binomial log-likelihood.
74+
Binomial distribution.
7575
7676
The discrete probability distribution of the number of successes
7777
in a sequence of n independent yes/no experiments, each of which
@@ -176,7 +176,7 @@ def logcdf(value, n, p):
176176

177177
class BetaBinomial(Discrete):
178178
R"""
179-
Beta-binomial log-likelihood.
179+
Beta-binomial distribution.
180180
181181
Equivalent to binomial random variable with success probability
182182
drawn from a beta distribution.
@@ -293,7 +293,7 @@ def logcdf(value, n, alpha, beta):
293293

294294

295295
class Bernoulli(Discrete):
296-
R"""Bernoulli log-likelihood.
296+
R"""Bernoulli distribution.
297297
298298
The Bernoulli distribution describes the probability of successes
299299
(x=1) and failures (x=0).
@@ -413,7 +413,7 @@ def rv_op(cls, q, beta, *, size=None, rng=None):
413413

414414

415415
class DiscreteWeibull(Discrete):
416-
R"""Discrete Weibull log-likelihood.
416+
R"""Discrete Weibull distribution.
417417
418418
The discrete Weibull distribution is a flexible model of count data that
419419
can handle both over- and under-dispersion.
@@ -506,7 +506,7 @@ def logcdf(value, q, beta):
506506

507507
class Poisson(Discrete):
508508
R"""
509-
Poisson log-likelihood.
509+
Poisson distribution.
510510
511511
Often used to model the number of events occurring in a fixed period
512512
of time when the times at which events occur are independent.
@@ -602,7 +602,7 @@ def logcdf(value, mu):
602602

603603
class NegativeBinomial(Discrete):
604604
R"""
605-
Negative binomial log-likelihood.
605+
Negative binomial distribution.
606606
607607
The negative binomial distribution describes a Poisson random variable
608608
whose rate parameter is gamma distributed.
@@ -750,7 +750,7 @@ def logcdf(value, n, p):
750750

751751
class Geometric(Discrete):
752752
R"""
753-
Geometric log-likelihood.
753+
Geometric distribution.
754754
755755
The probability that the first success in a sequence of Bernoulli
756756
trials occurs on the x'th trial.
@@ -1084,7 +1084,7 @@ def icdf(value, lower, upper):
10841084

10851085
class Categorical(Discrete):
10861086
R"""
1087-
Categorical log-likelihood.
1087+
Categorical distribution.
10881088
10891089
The most general discrete distribution. The pmf of this distribution is
10901090

0 commit comments

Comments
 (0)