|
71 | 71 |
|
72 | 72 | class Binomial(Discrete): |
73 | 73 | R""" |
74 | | - Binomial log-likelihood. |
| 74 | + Binomial distribution. |
75 | 75 |
|
76 | 76 | The discrete probability distribution of the number of successes |
77 | 77 | in a sequence of n independent yes/no experiments, each of which |
@@ -176,7 +176,7 @@ def logcdf(value, n, p): |
176 | 176 |
|
177 | 177 | class BetaBinomial(Discrete): |
178 | 178 | R""" |
179 | | - Beta-binomial log-likelihood. |
| 179 | + Beta-binomial distribution. |
180 | 180 |
|
181 | 181 | Equivalent to binomial random variable with success probability |
182 | 182 | drawn from a beta distribution. |
@@ -293,7 +293,7 @@ def logcdf(value, n, alpha, beta): |
293 | 293 |
|
294 | 294 |
|
295 | 295 | class Bernoulli(Discrete): |
296 | | - R"""Bernoulli log-likelihood. |
| 296 | + R"""Bernoulli distribution. |
297 | 297 |
|
298 | 298 | The Bernoulli distribution describes the probability of successes |
299 | 299 | (x=1) and failures (x=0). |
@@ -413,7 +413,7 @@ def rv_op(cls, q, beta, *, size=None, rng=None): |
413 | 413 |
|
414 | 414 |
|
415 | 415 | class DiscreteWeibull(Discrete): |
416 | | - R"""Discrete Weibull log-likelihood. |
| 416 | + R"""Discrete Weibull distribution. |
417 | 417 |
|
418 | 418 | The discrete Weibull distribution is a flexible model of count data that |
419 | 419 | can handle both over- and under-dispersion. |
@@ -506,7 +506,7 @@ def logcdf(value, q, beta): |
506 | 506 |
|
507 | 507 | class Poisson(Discrete): |
508 | 508 | R""" |
509 | | - Poisson log-likelihood. |
| 509 | + Poisson distribution. |
510 | 510 |
|
511 | 511 | Often used to model the number of events occurring in a fixed period |
512 | 512 | of time when the times at which events occur are independent. |
@@ -602,7 +602,7 @@ def logcdf(value, mu): |
602 | 602 |
|
603 | 603 | class NegativeBinomial(Discrete): |
604 | 604 | R""" |
605 | | - Negative binomial log-likelihood. |
| 605 | + Negative binomial distribution. |
606 | 606 |
|
607 | 607 | The negative binomial distribution describes a Poisson random variable |
608 | 608 | whose rate parameter is gamma distributed. |
@@ -750,7 +750,7 @@ def logcdf(value, n, p): |
750 | 750 |
|
751 | 751 | class Geometric(Discrete): |
752 | 752 | R""" |
753 | | - Geometric log-likelihood. |
| 753 | + Geometric distribution. |
754 | 754 |
|
755 | 755 | The probability that the first success in a sequence of Bernoulli |
756 | 756 | trials occurs on the x'th trial. |
@@ -1084,7 +1084,7 @@ def icdf(value, lower, upper): |
1084 | 1084 |
|
1085 | 1085 | class Categorical(Discrete): |
1086 | 1086 | R""" |
1087 | | - Categorical log-likelihood. |
| 1087 | + Categorical distribution. |
1088 | 1088 |
|
1089 | 1089 | The most general discrete distribution. The pmf of this distribution is |
1090 | 1090 |
|
|
0 commit comments