Skip to content

Commit f7cfe9c

Browse files
junpenglaotwiecki
authored andcommitted
Restructure docs.pymc.io, add developer guide (redo #3311)
* [WIP] Restructure docs.pymc.io, add developer guide Following #3303, this is a further restructure of our website. - Tutorial page include all our high level API guides (including theano.rst, prod_dist.rst, gp.rst etc) - renaming of some notebooks (some of them does not have title) - notebooks might appear under more than 1 categories (if it covers multiple topics) * Further formatting * Add developer guide * edit developer guide * small formatting * further formatting * final formatting * really final formatting * fix links * small edit + another proof reading * formatting
1 parent 0d44707 commit f7cfe9c

11 files changed

+1200
-100
lines changed

docs/source/conf.py

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -147,6 +147,7 @@
147147
("Examples", "nb_examples/index"),
148148
("Books + Videos", "learn"),
149149
("API", "api"),
150+
("Developer Guide", "developer_guide"),
150151
("About PyMC3", "history")
151152
],
152153
# "fixed_sidebar": "false",

docs/source/developer_guide.rst

Lines changed: 1107 additions & 0 deletions
Large diffs are not rendered by default.

docs/source/index.rst

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -10,10 +10,10 @@
1010
<h3 class="ui header">Friendly modelling API</h3>
1111
<p>PyMC3 allows you to write down models using an intuitive syntax to describe a data generating
1212
process.</p>
13-
<h3 class="ui header">Cutting edge algorithms</h3>
13+
<h3 class="ui header">Cutting edge algorithms and model building blocks</h3>
1414
<p>Fit your model using gradient-based MCMC algorithms like NUTS, using ADVI for fast approximate
1515
inference &mdash; including minibatch-ADVI for scaling to large datasets &mdash; or using
16-
Gaussian processes to fit a regression model.</p>
16+
Gaussian processes to build Bayesian nonparametric models.</p>
1717
</div>
1818
<div class="eight wide right floated column">
1919

docs/source/notebooks/GLM.ipynb

Lines changed: 5 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,7 @@
44
"cell_type": "markdown",
55
"metadata": {},
66
"source": [
7-
"# GLM: Linear Regression"
7+
"# (Generalized) Linear and Hierarchical Linear Models in PyMC3"
88
]
99
},
1010
{
@@ -28,8 +28,7 @@
2828
"cell_type": "markdown",
2929
"metadata": {},
3030
"source": [
31-
"Simple example\n",
32-
"==============\n",
31+
"## Linear Regression\n",
3332
"\n",
3433
"Lets generate some data with known slope and intercept and fit a simple linear GLM."
3534
]
@@ -146,8 +145,7 @@
146145
"cell_type": "markdown",
147146
"metadata": {},
148147
"source": [
149-
"Robust GLM\n",
150-
"==========\n",
148+
"## Robust GLM\n",
151149
"\n",
152150
"Lets try the same model but with a few outliers in the data."
153151
]
@@ -255,7 +253,7 @@
255253
"cell_type": "markdown",
256254
"metadata": {},
257255
"source": [
258-
"# Hierarchical GLM"
256+
"## Hierarchical GLM"
259257
]
260258
},
261259
{
@@ -452,7 +450,7 @@
452450
"cell_type": "markdown",
453451
"metadata": {},
454452
"source": [
455-
"# Logistic Regression"
453+
"## Logistic Regression"
456454
]
457455
},
458456
{

docs/source/notebooks/MvGaussianRandomWalk_demo.ipynb

Lines changed: 16 additions & 36 deletions
Large diffs are not rendered by default.

docs/source/notebooks/api_quickstart.ipynb

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,7 @@
44
"cell_type": "markdown",
55
"metadata": {},
66
"source": [
7-
"# API quickstart"
7+
"# General API quickstart"
88
]
99
},
1010
{

docs/source/notebooks/cox_model.ipynb

Lines changed: 8 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,5 +1,12 @@
11
{
22
"cells": [
3+
{
4+
"cell_type": "markdown",
5+
"metadata": {},
6+
"source": [
7+
"# Cox model"
8+
]
9+
},
310
{
411
"cell_type": "code",
512
"execution_count": 1,
@@ -284,7 +291,7 @@
284291
"name": "python",
285292
"nbconvert_exporter": "python",
286293
"pygments_lexer": "ipython3",
287-
"version": "3.6.1"
294+
"version": "3.6.5"
288295
},
289296
"latex_envs": {
290297
"bibliofile": "biblio.bib",

docs/source/notebooks/gaussian_process.ipynb

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,7 @@
44
"cell_type": "markdown",
55
"metadata": {},
66
"source": [
7-
"# Gaussian Processes\n",
7+
"# Gaussian Processes using numpy kernel\n",
88
"\n",
99
"(c) 2016 by Chris Fonnesbeck"
1010
]
Lines changed: 41 additions & 38 deletions
Original file line numberDiff line numberDiff line change
@@ -1,21 +1,27 @@
11
Gallery.contents = {
2-
"AR": "Time Series",
3-
"BEST": "Applied",
4-
"Bayes_factor": "Other",
5-
"Diagnosing_biased_Inference_with_Divergences": "Diagnostics",
6-
"Euler-Maruyama_and_SDEs": "Time Series",
7-
"GLM-hierarchical-advi-minibatch": "Variational Inference",
8-
"GLM-hierarchical-binominal-model": "GLMs",
9-
"GLM-hierarchical": "GLMs",
10-
"GLM-linear": "GLMs",
11-
"GLM-logistic": "GLMs",
12-
"GLM-model-selection": "GLMs",
13-
"GLM-negative-binomial-regression": "GLMs",
14-
"GLM-poisson-regression": "GLMs",
15-
"GLM-robust-with-outlier-detection": "GLMs",
16-
"GLM-robust": "GLMs",
17-
"GLM-rolling-regression": "GLMs",
18-
"GLM": "GLMs",
2+
"BEST": "Case Studies",
3+
"LKJ": "Case Studies",
4+
"dawid-skene": "Case Studies",
5+
"stochastic_volatility": "Case Studies",
6+
"rugby_analytics": "Case Studies",
7+
"multilevel_modeling": "Case Studies",
8+
"Diagnosing_biased_Inference_with_Divergences": "Diagnostics and Model Criticism",
9+
"model_comparison": "Diagnostics and Model Criticism",
10+
"posterior_predictive": "Diagnostics and Model Criticism",
11+
"Bayes_factor": "Diagnostics and Model Criticism",
12+
"GLM": "(Generalized) Linear and Hierarchical Linear Models",
13+
"GLM-linear": "(Generalized) Linear and Hierarchical Linear Models",
14+
"GLM-logistic": "(Generalized) Linear and Hierarchical Linear Models",
15+
"GLM-hierarchical-binominal-model": "(Generalized) Linear and Hierarchical Linear Models",
16+
"GLM-hierarchical": "(Generalized) Linear and Hierarchical Linear Models",
17+
"hierarchical_partial_pooling": "(Generalized) Linear and Hierarchical Linear Models",
18+
"GLM-model-selection": "(Generalized) Linear and Hierarchical Linear Models",
19+
"GLM-negative-binomial-regression": "(Generalized) Linear and Hierarchical Linear Models",
20+
"GLM-poisson-regression": "(Generalized) Linear and Hierarchical Linear Models",
21+
"GLM-robust-with-outlier-detection": "(Generalized) Linear and Hierarchical Linear Models",
22+
"GLM-robust": "(Generalized) Linear and Hierarchical Linear Models",
23+
"GLM-rolling-regression": "(Generalized) Linear and Hierarchical Linear Models",
24+
"GLM-hierarchical-advi-minibatch": "(Generalized) Linear and Hierarchical Linear Models",
1925
"GP-Kron": "Gaussian Processes",
2026
"GP-Latent": "Gaussian Processes",
2127
"GP-Marginal": "Gaussian Processes",
@@ -26,32 +32,29 @@ Gallery.contents = {
2632
"GP-TProcess": "Gaussian Processes",
2733
"GP-slice-sampling": "Gaussian Processes",
2834
"GP-smoothing": "Gaussian Processes",
29-
"MvGaussianRandomWalk_demo": "Time Series",
30-
"SMC2_gaussians": "Other",
31-
"bayes_param_survival_pymc3": "Survival Analysis",
32-
"bayesian_neural_network_advi": "Variational Inference",
33-
"bayesian_neural_network_with_sgfs": "Stochastic Gradients",
34-
"censored_data": "Survival Analysis",
35-
"constant_stochastic_gradient": "Stochastic Gradients",
36-
"convolutional_vae_keras_advi": "Variational Inference",
37-
"cox_model": "Other",
38-
"dawid-skene": "Applied",
35+
"gaussian_process": "Gaussian Processes",
3936
"dependent_density_regression": "Mixture Models",
4037
"dp_mix": "Mixture Models",
41-
"empirical-approx-overview": "Variational Inference",
4238
"gaussian-mixture-model-advi": "Mixture Models",
4339
"gaussian_mixture_model": "Mixture Models",
44-
"gaussian_process": "Gaussian Processes",
45-
"hierarchical_partial_pooling": "GLMs",
46-
"lda-advi-aevb": "Variational Inference",
4740
"marginalized_gaussian_mixture_model": "Mixture Models",
48-
"model_comparison": "Diagnostics",
49-
"multilevel_modeling": "Applied",
50-
"normalizing_flows_overview": "Variational Inference",
51-
"posterior_predictive": "Diagnostics",
52-
"rugby_analytics": "Applied",
41+
"SMC2_gaussians": "Simulation-based Inference",
42+
"bayesian_neural_network_with_sgfs": "Stochastic Gradients",
43+
"constant_stochastic_gradient": "Stochastic Gradients",
5344
"sgfs_simple_optimization": "Stochastic Gradients",
54-
"stochastic_volatility": "Applied",
45+
"bayes_param_survival_pymc3": "Survival Analysis",
46+
"censored_data": "Survival Analysis",
5547
"survival_analysis": "Survival Analysis",
56-
"weibull_aft": "Survival Analysis"
48+
"weibull_aft": "Survival Analysis",
49+
"cox_model": "Survival Analysis",
50+
"MvGaussianRandomWalk_demo": "Time Series",
51+
"AR": "Time Series",
52+
"Euler-Maruyama_and_SDEs": "Time Series",
53+
"bayesian_neural_network_advi": "Variational Inference",
54+
"convolutional_vae_keras_advi": "Variational Inference",
55+
"empirical-approx-overview": "Variational Inference",
56+
"lda-advi-aevb": "Variational Inference",
57+
"normalizing_flows_overview": "Variational Inference",
58+
"gaussian-mixture-model-advi": "Variational Inference",
59+
"GLM-hierarchical-advi-minibatch": "Variational Inference"
5760
}
Lines changed: 15 additions & 11 deletions
Original file line numberDiff line numberDiff line change
@@ -1,16 +1,20 @@
11
Gallery.contents = {
22
"api_quickstart": "Basics",
3-
"getting_started": "Basics",
4-
"sampler-stats": "Basics",
5-
"sampling_compound_step": "Basics",
6-
"howto_debugging": "Basics",
7-
"live_sample_plots": "How-To",
3+
"variational_api_quickstart": "Basics",
4+
"theano": "Basics",
5+
"prob_dists": "Basics",
6+
"gp": "Basics",
7+
"sampling_compound_step": "Deep dives",
8+
"sampler-stats": "Deep dives",
9+
"Diagnosing_biased_Inference_with_Divergences": "Deep dives",
10+
"advanced_theano": "Deep dives",
11+
"getting_started": "Deep dives",
12+
"PyMC3_tips_and_heuristic": "How-To",
13+
"blackbox_external_likelihood": "How-To",
814
"profiling": "How-To",
9-
"updating_priors": "How-To",
10-
"lasso_block_update": "How-To",
15+
"howto_debugging": "How-To",
1116
"model_averaging": "How-To",
12-
"blackbox_external_likelihood": "How-To",
13-
"LKJ": "How-To",
14-
"variational_api_quickstart": "How-To",
15-
"PyMC3_tips_and_heuristic": "How-To"
17+
"updating_priors": "How-To",
18+
"live_sample_plots": "How-To",
19+
"lasso_block_update": "How-To"
1620
}

0 commit comments

Comments
 (0)