Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
27 changes: 27 additions & 0 deletions pymc/distributions/discrete.py
Original file line number Diff line number Diff line change
Expand Up @@ -1191,6 +1191,33 @@ def logp(value, p):
msg="0 <= p <=1, sum(p) = 1",
)

def icdf(value, p):
eps = 1e-12
q = value
q_safe = pt.clip(q, 0.0, 1.0 - eps)
cdf = pt.cumsum(p, axis=-1)

cdf_batch_ndim = cdf.ndim - 1
q_ndim = q_safe.ndim
if q_ndim < cdf_batch_ndim:
q_safe = pt.shape_padleft(q_safe, cdf_batch_ndim - q_ndim)
elif q_ndim > cdf_batch_ndim:
extra = q_ndim - cdf_batch_ndim
axes = list(range(cdf.ndim - 1)) + ["x"] * extra + [cdf.ndim - 1]
cdf = cdf.dimshuffle(axes)

mask = pt.shape_padright(q_safe, 1) <= cdf
idx = pt.argmax(mask, axis=-1).astype("int64")

idx = check_icdf_value(idx, q)
return check_icdf_parameters(
idx,
0 <= p,
p <= 1,
pt.isclose(pt.sum(p, axis=-1), 1),
msg="0 <= p <=1, sum(p) = 1",
)

def logcdf(value, p):
k = pt.shape(p)[-1]
value, safe_value_p = Categorical._safe_index_value_p(value, p.cumsum(-1))
Expand Down
27 changes: 27 additions & 0 deletions tests/distributions/test_discrete.py
Original file line number Diff line number Diff line change
Expand Up @@ -796,6 +796,33 @@ class TestCategorical(BaseTestDistributionRandom):
"check_rv_size",
]

@pytest.mark.parametrize("n", [2, 3, 4])
def test_categorical_icdf(self, n):
paramdomains = {"p": Simplex(n)}

def numpy_categorical_ppf(q, p):
cdf = np.cumsum(p, axis=-1)
q = np.asarray(q)
return np.argmax(q[..., None] <= cdf, axis=-1)

check_icdf(pm.Categorical, paramdomains, numpy_categorical_ppf)

def test_categorical_icdf_batch_shapes(self):
p = np.array([[0.2, 0.3, 0.5], [0.1, 0.1, 0.8]])
q_vec = np.array([0.0, 0.25])
dist = pm.Categorical.dist(p=p)
out_vec = icdf(dist, q_vec).eval()
np.testing.assert_array_equal(out_vec, np.array([0, 2]))
q_mat = np.array([[0.05, 0.6, 0.99], [0.21, 0.19, 0.81]])
out_mat = icdf(dist, q_mat).eval()
np.testing.assert_array_equal(out_mat, np.array([[0, 2, 2], [2, 1, 2]]))

def test_categorical_icdf_upper_edge(self):
p = np.array([0.1, 0.2, 0.7])
dist = pm.Categorical.dist(p=p)
out = icdf(dist, np.array([1.0])).eval()
assert out[0] == 2


class TestLogitCategorical(BaseTestDistributionRandom):
pymc_dist = pm.Categorical
Expand Down