Skip to content
Closed
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
41 changes: 41 additions & 0 deletions pytensor/tensor/math.py
Original file line number Diff line number Diff line change
Expand Up @@ -26,6 +26,7 @@
concatenate,
constant,
expand_dims,
extract_constant,
stack,
switch,
)
Expand Down Expand Up @@ -1569,6 +1570,46 @@ def std(input, axis=None, ddof=0, keepdims=False, corrected=False):
return ret


def quantile(input, quant, axis=None):
"""
Computes the median along the given axis(es) of a tensor `input`.
Parameters
----------
input: TensorVariable
The input tensor.
quant: float
Probability for the quantiles to compute.
Values must be between 0 and 1 inclusive.
axis: None or int or (list of int) (see `Sum`)
Compute the quantile along this axis of the tensor.
None means computing along the flattened tensor.
"""
input = as_tensor_variable(input)
input_ndim = input.type.ndim
if axis is None:
axis = list(range(input_ndim))
elif isinstance(axis, int | np.integer):
axis = [axis]
elif isinstance(axis, np.ndarray) and axis.ndim == 0:
axis = [int(axis)]
else:
axis = [int(a) for a in axis]

new_axes_order = [i for i in range(input.ndim) if i not in axis] + axis
input = input.dimshuffle(new_axes_order)

remaining_axis_size = shape(input)[: input.ndim - len(axis)]
flattened_axis_size = prod(shape(input)[input.ndim - len(axis) :])

input = input.reshape(concatenate([remaining_axis_size, [flattened_axis_size]]))
axis = -1

sorted_input = input.sort(axis=axis)
input_shape = input.shape[axis]
k = extract_constant(input_shape) * quant
return sorted_input[k]


@scalar_elemwise(symbolname="scalar_maximum")
def maximum(x, y):
"""elemwise maximum. See max for the maximum in one tensor"""
Expand Down