@@ -50,16 +50,14 @@ def test_inverse_prop_param_recovery():
50
50
df = cp .load_data ("nhefs" )
51
51
seed = 42
52
52
result = cp .pymc_experiments .InversePropensityWeighting (
53
- df ,
54
- formula = "trt ~ 1 + age + race" ,
55
- outcome_variable = "outcome" ,
56
- weighting_scheme = "robust" ,
57
- model = cp .pymc_models .PropensityScore (
58
- sample_kwargs = sample_kwargs
59
- ),
53
+ df ,
54
+ formula = "trt ~ 1 + age + race" ,
55
+ outcome_variable = "outcome" ,
56
+ weighting_scheme = "robust" ,
57
+ model = cp .pymc_models .PropensityScore (sample_kwargs = sample_kwargs ),
60
58
)
61
59
assert isinstance (result .idata , az .InferenceData )
62
- ps = result .idata .posterior ['p' ].mean (dim = (' chain' , ' draw' ))
60
+ ps = result .idata .posterior ["p" ].mean (dim = (" chain" , " draw" ))
63
61
w1 , w2 , _ , _ = result .make_doubly_robust_adjustment (ps )
64
62
assert isinstance (w1 , pd .Series )
65
63
assert isinstance (w2 , pd .Series )
@@ -72,6 +70,3 @@ def test_inverse_prop_param_recovery():
72
70
w1 , w2 , n1 , n2 = result .make_overlap_adjustments (ps )
73
71
assert isinstance (w1 , pd .Series )
74
72
assert isinstance (w2 , pd .Series )
75
-
76
-
77
-
0 commit comments