-
-
Notifications
You must be signed in to change notification settings - Fork 2.3k
Band names for arrow exported images #9099
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
base: main
Are you sure you want to change the base?
Changes from 12 commits
85212db
6455640
1159e65
1a02d4e
28c7645
7d2abbd
c07fe6e
9e415c7
5fc0cf1
324258c
13e4e58
b4fe17c
52413cf
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change | ||||||
---|---|---|---|---|---|---|---|---|
@@ -0,0 +1,278 @@ | ||||||||
from __future__ import annotations | ||||||||
|
||||||||
import json | ||||||||
from typing import Any, NamedTuple | ||||||||
|
||||||||
import pytest | ||||||||
|
||||||||
from PIL import Image | ||||||||
|
||||||||
from .helper import ( | ||||||||
assert_deep_equal, | ||||||||
assert_image_equal, | ||||||||
hopper, | ||||||||
is_big_endian, | ||||||||
) | ||||||||
|
||||||||
TYPE_CHECKING = False | ||||||||
if TYPE_CHECKING: | ||||||||
from arro3 import compute # type: ignore [import-not-found] | ||||||||
from arro3.core import ( # type: ignore [import-not-found] | ||||||||
Array, | ||||||||
DataType, | ||||||||
Field, | ||||||||
fixed_size_list_array, | ||||||||
) | ||||||||
else: | ||||||||
arro3 = pytest.importorskip("arro3", reason="Arro3 not installed") | ||||||||
from arro3 import compute | ||||||||
from arro3.core import Array, DataType, Field, fixed_size_list_array | ||||||||
|
||||||||
TEST_IMAGE_SIZE = (10, 10) | ||||||||
|
||||||||
|
||||||||
def _test_img_equals_pyarray( | ||||||||
img: Image.Image, arr: Any, mask: list[int] | None, elts_per_pixel: int = 1 | ||||||||
) -> None: | ||||||||
assert img.height * img.width * elts_per_pixel == len(arr) | ||||||||
px = img.load() | ||||||||
assert px is not None | ||||||||
if elts_per_pixel > 1 and mask is None: | ||||||||
# have to do element-wise comparison when we're comparing | ||||||||
# flattened r,g,b,a to a pixel. | ||||||||
mask = list(range(elts_per_pixel)) | ||||||||
for x in range(0, img.size[0], int(img.size[0] / 10)): | ||||||||
for y in range(0, img.size[1], int(img.size[1] / 10)): | ||||||||
if mask: | ||||||||
pixel = px[x, y] | ||||||||
assert isinstance(pixel, tuple) | ||||||||
for ix, elt in enumerate(mask): | ||||||||
if elts_per_pixel == 1: | ||||||||
assert pixel[ix] == arr[y * img.width + x].as_py()[elt] | ||||||||
else: | ||||||||
assert ( | ||||||||
pixel[ix] | ||||||||
== arr[(y * img.width + x) * elts_per_pixel + elt].as_py() | ||||||||
) | ||||||||
else: | ||||||||
assert_deep_equal(px[x, y], arr[y * img.width + x].as_py()) | ||||||||
|
||||||||
|
||||||||
def _test_img_equals_int32_pyarray( | ||||||||
img: Image.Image, arr: Any, mask: list[int] | None, elts_per_pixel: int = 1 | ||||||||
) -> None: | ||||||||
assert img.height * img.width * elts_per_pixel == len(arr) | ||||||||
px = img.load() | ||||||||
assert px is not None | ||||||||
if mask is None: | ||||||||
# have to do element-wise comparison when we're comparing | ||||||||
# flattened rgba in an uint32 to a pixel. | ||||||||
mask = list(range(elts_per_pixel)) | ||||||||
for x in range(0, img.size[0], int(img.size[0] / 10)): | ||||||||
for y in range(0, img.size[1], int(img.size[1] / 10)): | ||||||||
pixel = px[x, y] | ||||||||
assert isinstance(pixel, tuple) | ||||||||
arr_pixel_int = arr[y * img.width + x].as_py() | ||||||||
arr_pixel_tuple = ( | ||||||||
arr_pixel_int % 256, | ||||||||
(arr_pixel_int // 256) % 256, | ||||||||
(arr_pixel_int // 256**2) % 256, | ||||||||
(arr_pixel_int // 256**3), | ||||||||
) | ||||||||
if is_big_endian(): | ||||||||
arr_pixel_tuple = arr_pixel_tuple[::-1] | ||||||||
|
||||||||
for ix, elt in enumerate(mask): | ||||||||
assert pixel[ix] == arr_pixel_tuple[elt] | ||||||||
|
||||||||
|
||||||||
fl_uint8_4_type = DataType.list(Field("_", DataType.uint8()).with_nullable(False), 4) | ||||||||
|
||||||||
|
||||||||
@pytest.mark.parametrize( | ||||||||
"mode, dtype, mask", | ||||||||
( | ||||||||
("L", DataType.uint8(), None), | ||||||||
("I", DataType.int32(), None), | ||||||||
("F", DataType.float32(), None), | ||||||||
("LA", fl_uint8_4_type, [0, 3]), | ||||||||
("RGB", fl_uint8_4_type, [0, 1, 2]), | ||||||||
("RGBA", fl_uint8_4_type, None), | ||||||||
("RGBX", fl_uint8_4_type, None), | ||||||||
("CMYK", fl_uint8_4_type, None), | ||||||||
("YCbCr", fl_uint8_4_type, [0, 1, 2]), | ||||||||
("HSV", fl_uint8_4_type, [0, 1, 2]), | ||||||||
), | ||||||||
) | ||||||||
def test_to_array(mode: str, dtype: DataType, mask: list[int] | None) -> None: | ||||||||
img = hopper(mode) | ||||||||
|
||||||||
# Resize to non-square | ||||||||
img = img.crop((3, 0, 124, 127)) | ||||||||
assert img.size == (121, 127) | ||||||||
|
||||||||
arr = Array(img) | ||||||||
_test_img_equals_pyarray(img, arr, mask) | ||||||||
assert arr.type == dtype | ||||||||
|
||||||||
reloaded = Image.fromarrow(arr, mode, img.size) | ||||||||
|
||||||||
assert reloaded | ||||||||
|
||||||||
assert_image_equal(img, reloaded) | ||||||||
|
||||||||
|
||||||||
def test_lifetime() -> None: | ||||||||
# valgrind shouldn't error out here. | ||||||||
# arrays should be accessible after the image is deleted. | ||||||||
|
||||||||
img = hopper("L") | ||||||||
|
||||||||
arr_1 = Array(img) | ||||||||
arr_2 = Array(img) | ||||||||
|
||||||||
del img | ||||||||
|
||||||||
assert compute.sum(arr_1).as_py() > 0 | ||||||||
del arr_1 | ||||||||
|
||||||||
assert compute.sum(arr_2).as_py() > 0 | ||||||||
del arr_2 | ||||||||
|
||||||||
|
||||||||
def test_lifetime2() -> None: | ||||||||
# valgrind shouldn't error out here. | ||||||||
# img should remain after the arrays are collected. | ||||||||
|
||||||||
img = hopper("L") | ||||||||
|
||||||||
arr_1 = Array(img) | ||||||||
arr_2 = Array(img) | ||||||||
|
||||||||
assert compute.sum(arr_1).as_py() > 0 | ||||||||
del arr_1 | ||||||||
|
||||||||
assert compute.sum(arr_2).as_py() > 0 | ||||||||
del arr_2 | ||||||||
|
||||||||
img2 = img.copy() | ||||||||
px = img2.load() | ||||||||
Comment on lines
+155
to
+156
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more.
Suggested change
Or are you using There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. This is to ensure we haven't over freed the memory, as we're refcounting on the arrow usages. |
||||||||
assert px # make mypy happy | ||||||||
assert isinstance(px[0, 0], int) | ||||||||
|
||||||||
|
||||||||
class DataShape(NamedTuple): | ||||||||
dtype: DataType | ||||||||
# Strictly speaking, elt should be a pixel or pixel component, so | ||||||||
# list[uint8][4], float, int, uint32, uint8, etc. But more | ||||||||
# correctly, it should be exactly the dtype from the line above. | ||||||||
elt: Any | ||||||||
elts_per_pixel: int | ||||||||
|
||||||||
|
||||||||
UINT_ARR = DataShape( | ||||||||
dtype=fl_uint8_4_type, | ||||||||
elt=[1, 2, 3, 4], # array of 4 uint8 per pixel | ||||||||
elts_per_pixel=1, # only one array per pixel | ||||||||
) | ||||||||
|
||||||||
UINT = DataShape( | ||||||||
dtype=DataType.uint8(), | ||||||||
elt=3, # one uint8, | ||||||||
elts_per_pixel=4, # but repeated 4x per pixel | ||||||||
) | ||||||||
|
||||||||
UINT32 = DataShape( | ||||||||
dtype=DataType.uint32(), | ||||||||
elt=0xABCDEF45, # one packed int, doesn't fit in a int32 > 0x80000000 | ||||||||
elts_per_pixel=1, # one per pixel | ||||||||
) | ||||||||
|
||||||||
INT32 = DataShape( | ||||||||
dtype=DataType.uint32(), | ||||||||
elt=0x12CDEF45, # one packed int | ||||||||
elts_per_pixel=1, # one per pixel | ||||||||
) | ||||||||
|
||||||||
|
||||||||
@pytest.mark.parametrize( | ||||||||
"mode, data_tp, mask", | ||||||||
( | ||||||||
("L", DataShape(DataType.uint8(), 3, 1), None), | ||||||||
("I", DataShape(DataType.int32(), 1 << 24, 1), None), | ||||||||
("F", DataShape(DataType.float32(), 3.14159, 1), None), | ||||||||
("LA", UINT_ARR, [0, 3]), | ||||||||
("LA", UINT, [0, 3]), | ||||||||
("RGB", UINT_ARR, [0, 1, 2]), | ||||||||
("RGBA", UINT_ARR, None), | ||||||||
("CMYK", UINT_ARR, None), | ||||||||
("YCbCr", UINT_ARR, [0, 1, 2]), | ||||||||
("HSV", UINT_ARR, [0, 1, 2]), | ||||||||
("RGB", UINT, [0, 1, 2]), | ||||||||
("RGBA", UINT, None), | ||||||||
("CMYK", UINT, None), | ||||||||
("YCbCr", UINT, [0, 1, 2]), | ||||||||
("HSV", UINT, [0, 1, 2]), | ||||||||
), | ||||||||
) | ||||||||
def test_fromarray(mode: str, data_tp: DataShape, mask: list[int] | None) -> None: | ||||||||
(dtype, elt, elts_per_pixel) = data_tp | ||||||||
|
||||||||
ct_pixels = TEST_IMAGE_SIZE[0] * TEST_IMAGE_SIZE[1] | ||||||||
if dtype == fl_uint8_4_type: | ||||||||
tmp_arr = Array(elt * (ct_pixels * elts_per_pixel), type=DataType.uint8()) | ||||||||
arr = fixed_size_list_array(tmp_arr, 4) | ||||||||
else: | ||||||||
arr = Array([elt] * (ct_pixels * elts_per_pixel), type=dtype) | ||||||||
img = Image.fromarrow(arr, mode, TEST_IMAGE_SIZE) | ||||||||
|
||||||||
_test_img_equals_pyarray(img, arr, mask, elts_per_pixel) | ||||||||
|
||||||||
|
||||||||
@pytest.mark.parametrize( | ||||||||
"mode, mask", | ||||||||
( | ||||||||
("LA", [0, 3]), | ||||||||
("RGB", [0, 1, 2]), | ||||||||
("RGBA", None), | ||||||||
("CMYK", None), | ||||||||
("YCbCr", [0, 1, 2]), | ||||||||
("HSV", [0, 1, 2]), | ||||||||
), | ||||||||
) | ||||||||
@pytest.mark.parametrize("data_tp", (UINT32, INT32)) | ||||||||
def test_from_int32array(mode: str, mask: list[int] | None, data_tp: DataShape) -> None: | ||||||||
(dtype, elt, elts_per_pixel) = data_tp | ||||||||
|
||||||||
ct_pixels = TEST_IMAGE_SIZE[0] * TEST_IMAGE_SIZE[1] | ||||||||
arr = Array([elt] * (ct_pixels * elts_per_pixel), type=dtype) | ||||||||
img = Image.fromarrow(arr, mode, TEST_IMAGE_SIZE) | ||||||||
|
||||||||
_test_img_equals_int32_pyarray(img, arr, mask, elts_per_pixel) | ||||||||
|
||||||||
|
||||||||
@pytest.mark.parametrize( | ||||||||
"mode, metadata", | ||||||||
( | ||||||||
("LA", ["L", "X", "X", "A"]), | ||||||||
("RGB", ["R", "G", "B", "X"]), | ||||||||
("RGBX", ["R", "G", "B", "X"]), | ||||||||
("RGBA", ["R", "G", "B", "A"]), | ||||||||
("CMYK", ["C", "M", "Y", "K"]), | ||||||||
("YCbCr", ["Y", "Cb", "Cr", "X"]), | ||||||||
("HSV", ["H", "S", "V", "X"]), | ||||||||
), | ||||||||
) | ||||||||
def test_image_metadata(mode: str, metadata: list[str]) -> None: | ||||||||
img = hopper(mode) | ||||||||
|
||||||||
arr = Array(img) | ||||||||
|
||||||||
assert arr.type.value_field | ||||||||
assert arr.type.value_field.metadata | ||||||||
assert arr.type.value_field.metadata[b"image"] | ||||||||
|
||||||||
parsed_metadata = json.loads(arr.type.value_field.metadata[b"image"].decode("utf8")) | ||||||||
|
||||||||
assert "bands" in parsed_metadata | ||||||||
assert parsed_metadata["bands"] == metadata |
Uh oh!
There was an error while loading. Please reload this page.