Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
61 changes: 61 additions & 0 deletions Lib/test/test_complex.py
Original file line number Diff line number Diff line change
Expand Up @@ -87,6 +87,10 @@ def assertClose(self, x, y, eps=1e-9):
self.assertCloseAbs(x.real, y.real, eps)
self.assertCloseAbs(x.imag, y.imag, eps)

def assertSameSign(self, x, y):
if copysign(1., x) != copysign(1., y):
self.fail(f'{x!r} and {y!r} have different signs')

def check_div(self, x, y):
"""Compute complex z=x*y, and check that z/x==y and z/y==x."""
z = x * y
Expand Down Expand Up @@ -445,6 +449,63 @@ def test_pow_with_small_integer_exponents(self):
self.assertEqual(str(float_pow), str(int_pow))
self.assertEqual(str(complex_pow), str(int_pow))

# Check that complex numbers with special components
# are correctly handled.
values = [complex(x, y)
for x in [5, -5, +0.0, -0.0, INF, -INF, NAN]
for y in [12, -12, +0.0, -0.0, INF, -INF, NAN]]
for c in values:
with self.subTest(value=c):
self.assertComplexesAreIdentical(c**0, complex(1, +0.0))
self.assertComplexesAreIdentical(c**1, c)
self.assertComplexesAreIdentical(c**2, c*c)
self.assertComplexesAreIdentical(c**3, c*(c*c))
self.assertComplexesAreIdentical(c**3, (c*c)*c)
if not c:
continue
for n in range(1, 9):
with self.subTest(exponent=-n):
self.assertComplexesAreIdentical(c**-n, 1/(c**n))

# Special cases for complex division.
for x in [+2, -2]:
for y in [+0.0, -0.0]:
c = complex(x, y)
with self.subTest(value=c):
self.assertComplexesAreIdentical(c**-1, complex(1/x, -y))
c = complex(y, x)
with self.subTest(value=c):
self.assertComplexesAreIdentical(c**-1, complex(y, -1/x))
for x in [+INF, -INF]:
for y in [+1, -1]:
c = complex(x, y)
with self.subTest(value=c):
self.assertComplexesAreIdentical(c**-1, complex(1/x, -0.0*y))
self.assertComplexesAreIdentical(c**-2, complex(0.0, -y/x))
c = complex(y, x)
with self.subTest(value=c):
self.assertComplexesAreIdentical(c**-1, complex(+0.0*y, -1/x))
self.assertComplexesAreIdentical(c**-2, complex(-0.0, -y/x))

# Test that zeroes has the same sign as small non-zero values.
eps = 1e-8
pairs = [(complex(x, y), complex(x, copysign(0.0, y)))
for x in [+1, -1] for y in [+eps, -eps]]
pairs += [(complex(y, x), complex(copysign(0.0, y), x))
for x in [+1, -1] for y in [+eps, -eps]]
for c1, c2 in pairs:
for n in exponents:
with self.subTest(value=c1, exponent=n):
r1 = c1**n
r2 = c2**n
self.assertClose(r1, r2)
self.assertSameSign(r1.real, r2.real)
self.assertSameSign(r1.imag, r2.imag)
self.assertNotEqual(r1.real, 0.0)
if n != 0:
self.assertNotEqual(r1.imag, 0.0)
self.assertTrue(r2.real == 0.0 or r2.imag == 0.0)

def test_boolcontext(self):
for i in range(100):
self.assertTrue(complex(random() + 1e-6, random() + 1e-6))
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,2 @@
Fix calculation of powers of complex numbers. Small integer powers now produce correct sign of zero components. Negative powers of infinite numbers now evaluate to zero instead of NaN.
Powers of infinite numbers no longer raise OverflowError.
39 changes: 25 additions & 14 deletions Objects/complexobject.c
Original file line number Diff line number Diff line change
Expand Up @@ -333,23 +333,31 @@ _Py_c_pow(Py_complex a, Py_complex b)
r.real = len*cos(phase);
r.imag = len*sin(phase);

_Py_ADJUST_ERANGE2(r.real, r.imag);
if (isfinite(a.real) && isfinite(a.imag)
&& isfinite(b.real) && isfinite(b.imag))
{
_Py_ADJUST_ERANGE2(r.real, r.imag);
}
}
return r;
}

static Py_complex
c_powu(Py_complex x, long n)
{
Py_complex r, p;
long mask = 1;
r = c_1;
p = x;
while (mask > 0 && n >= mask) {
if (n & mask)
r = _Py_c_prod(r,p);
mask <<= 1;
p = _Py_c_prod(p,p);
assert(n > 0);
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

If you want to make this function a bit more natural, I would suggest having if (n == 0) { return c_1; } and remove the assertion n > 0 and just assume n is an unsigned long (or change the assertion to n >= 0). I don't think it's necessary to handle the case n == 0 in c_powi().

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

See my patch above: #124243 (comment)

Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Oh I remember this one. I think we can just keep special-casing n == 0 without actually wondering about the cutoff limit. A generic square-and-multiply algorithm is fine IMO.

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Well, it's possible to find base and exponent, when binary exponentiation is worse.

E.g. on this branch, if we omit cutoff, on my system I have:

$ ./python -m timeit -u nsec -s 'z=1e-10+1j;e=1e18+0j' 'z**e'
200000 loops, best of 5: 1.39e+03 nsec per loop
$ ./python -m timeit -u nsec -s 'z=1e-10+1j;e=1e18+0j;from _testcapi import _py_c_pow as p' 'p(z, e)'
200000 loops, best of 5: 1.12e+03 nsec per loop

(Though, both results looks to be a garbage.)

while ((n & 1) == 0) {
x = _Py_c_prod(x, x);
n >>= 1;
}
Py_complex r = x;
n >>= 1;
while (n) {
x = _Py_c_prod(x, x);
if (n & 1) {
r = _Py_c_prod(r, x);
}
n >>= 1;
Comment on lines +348 to +360
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

For me, your tests works fine with my patch from #118000. Here it is, with slightly adjusted formatting (and using new _Py_rc_quot):

diff --git a/Objects/complexobject.c b/Objects/complexobject.c
index b66ebe131a..9dc5d22b37 100644
--- a/Objects/complexobject.c
+++ b/Objects/complexobject.c
@@ -333,19 +333,26 @@ _Py_c_pow(Py_complex a, Py_complex b)
         r.real = len*cos(phase);
         r.imag = len*sin(phase);
 
-        _Py_ADJUST_ERANGE2(r.real, r.imag);
+        if (isfinite(a.real) && isfinite(a.imag)
+            && isfinite(b.real) && isfinite(b.imag))
+        {
+            _Py_ADJUST_ERANGE2(r.real, r.imag);
+        }
     }
     return r;
 }
 
+#define INT_EXP_CUTOFF 100
+
 static Py_complex
 c_powu(Py_complex x, long n)
 {
-    Py_complex r, p;
+    Py_complex p = x, r = n-- ? p : c_1;
     long mask = 1;
-    r = c_1;
-    p = x;
-    while (mask > 0 && n >= mask) {
+    assert(-1 <= n);
+    assert(n < INT_EXP_CUTOFF);
+    while (n >= mask) {
+        assert(mask > 0);
         if (n & mask)
             r = _Py_c_prod(r,p);
         mask <<= 1;
@@ -357,11 +364,10 @@ c_powu(Py_complex x, long n)
 static Py_complex
 c_powi(Py_complex x, long n)
 {
-    if (n > 0)
-        return c_powu(x,n);
+    if (n >= 0)
+        return c_powu(x, n);
     else
-        return _Py_c_quot(c_1, c_powu(x,-n));
-
+        return _Py_rc_quot(1.0, c_powu(x, -n));
 }
 
 double
@@ -751,9 +757,13 @@ complex_pow(PyObject *v, PyObject *w, PyObject *z)
     errno = 0;
     // Check whether the exponent has a small integer value, and if so use
     // a faster and more accurate algorithm.
-    if (b.imag == 0.0 && b.real == floor(b.real) && fabs(b.real) <= 100.0) {
+    if (b.imag == 0.0 && b.real == floor(b.real)
+        && fabs(b.real) <= INT_EXP_CUTOFF)
+    {
         p = c_powi(a, (long)b.real);
-        _Py_ADJUST_ERANGE2(p.real, p.imag);
+        if (isfinite(a.real) && isfinite(a.imag)) {
+            _Py_ADJUST_ERANGE2(p.real, p.imag);
+        }
     }
     else {
         p = _Py_c_pow(a, b);

(asserts are outcome of review, I'm not sure they are useful here.)

What do you think?

}
return r;
}
Expand All @@ -358,10 +366,11 @@ static Py_complex
c_powi(Py_complex x, long n)
{
if (n > 0)
return c_powu(x,n);
return c_powu(x, n);
else if (n < 0)
return _Py_rc_quot(1.0, c_powu(x, -n));
else
return _Py_c_quot(c_1, c_powu(x,-n));

return c_1;
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Took me a while to remember that this was 1 + 0j (maybe rename that variable in a separate issue, e.g., ONE_AS_COMPLEX).

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This now used just in one place. If we need this branch - it's better to inline struct value here.

Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

If this is the case, then yes, let's inline it.

}

double
Expand Down Expand Up @@ -737,7 +746,9 @@ complex_pow(PyObject *v, PyObject *w, PyObject *z)
// a faster and more accurate algorithm.
if (b.imag == 0.0 && b.real == floor(b.real) && fabs(b.real) <= 100.0) {
p = c_powi(a, (long)b.real);
_Py_ADJUST_ERANGE2(p.real, p.imag);
if (isfinite(a.real) && isfinite(a.imag)) {
_Py_ADJUST_ERANGE2(p.real, p.imag);
}
}
else {
p = _Py_c_pow(a, b);
Expand Down
Loading