Skip to content

Commit 2a4a25d

Browse files
Add files via upload
1 parent 3b44dee commit 2a4a25d

File tree

8 files changed

+4840
-0
lines changed

8 files changed

+4840
-0
lines changed
1.56 MB
Binary file not shown.
1.56 MB
Binary file not shown.
Lines changed: 314 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,314 @@
1+
#================================================================
2+
#
3+
# File name : RL-Bitcoin-trading-bot_3.py
4+
# Author : PyLessons
5+
# Created date: 2020-12-20
6+
# Website : https://pylessons.com/
7+
# GitHub : https://github.com/pythonlessons/RL-Bitcoin-trading-bot
8+
# Description : Trading Crypto with Reinforcement Learning #3
9+
#
10+
#================================================================
11+
import os
12+
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
13+
import copy
14+
import pandas as pd
15+
import numpy as np
16+
import random
17+
from collections import deque
18+
from tensorboardX import SummaryWriter
19+
from tensorflow.keras.optimizers import Adam, RMSprop
20+
21+
from model import Actor_Model, Critic_Model
22+
from utils import TradingGraph, Write_to_file
23+
24+
25+
class CustomEnv:
26+
# A custom Bitcoin trading environment
27+
def __init__(self, df, initial_balance=1000, lookback_window_size=50, Render_range = 100):
28+
# Define action space and state size and other custom parameters
29+
self.df = df.dropna().reset_index()
30+
self.df_total_steps = len(self.df)-1
31+
self.initial_balance = initial_balance
32+
self.lookback_window_size = lookback_window_size
33+
self.Render_range = Render_range # render range in visualization
34+
35+
# Action space from 0 to 3, 0 is hold, 1 is buy, 2 is sell
36+
self.action_space = np.array([0, 1, 2])
37+
38+
# Orders history contains the balance, net_worth, crypto_bought, crypto_sold, crypto_held values for the last lookback_window_size steps
39+
self.orders_history = deque(maxlen=self.lookback_window_size)
40+
41+
# Market history contains the OHCL values for the last lookback_window_size prices
42+
self.market_history = deque(maxlen=self.lookback_window_size)
43+
44+
# State size contains Market+Orders history for the last lookback_window_size steps
45+
self.state_size = (self.lookback_window_size, 10)
46+
47+
# Neural Networks part bellow
48+
self.lr = 0.00001
49+
self.epochs = 1
50+
self.normalize_value = 100000
51+
self.optimizer = Adam
52+
53+
# Create Actor-Critic network model
54+
self.Actor = Actor_Model(input_shape=self.state_size, action_space = self.action_space.shape[0], lr=self.lr, optimizer = self.optimizer)
55+
self.Critic = Critic_Model(input_shape=self.state_size, action_space = self.action_space.shape[0], lr=self.lr, optimizer = self.optimizer)
56+
57+
# create tensorboard writer
58+
def create_writer(self):
59+
self.replay_count = 0
60+
self.writer = SummaryWriter(comment="Crypto_trader")
61+
62+
# Reset the state of the environment to an initial state
63+
def reset(self, env_steps_size = 0):
64+
self.visualization = TradingGraph(Render_range=self.Render_range) # init visualization
65+
self.trades = deque(maxlen=self.Render_range) # limited orders memory for visualization
66+
67+
self.balance = self.initial_balance
68+
self.net_worth = self.initial_balance
69+
self.prev_net_worth = self.initial_balance
70+
self.crypto_held = 0
71+
self.crypto_sold = 0
72+
self.crypto_bought = 0
73+
self.episode_orders = 0 # test
74+
self.env_steps_size = env_steps_size
75+
if env_steps_size > 0: # used for training dataset
76+
self.start_step = random.randint(self.lookback_window_size, self.df_total_steps - env_steps_size)
77+
self.end_step = self.start_step + env_steps_size
78+
else: # used for testing dataset
79+
self.start_step = self.lookback_window_size
80+
self.end_step = self.df_total_steps
81+
82+
self.current_step = self.start_step
83+
84+
for i in reversed(range(self.lookback_window_size)):
85+
current_step = self.current_step - i
86+
self.orders_history.append([self.balance, self.net_worth, self.crypto_bought, self.crypto_sold, self.crypto_held])
87+
self.market_history.append([self.df.loc[current_step, 'Open'],
88+
self.df.loc[current_step, 'High'],
89+
self.df.loc[current_step, 'Low'],
90+
self.df.loc[current_step, 'Close'],
91+
self.df.loc[current_step, 'Volume']
92+
])
93+
94+
state = np.concatenate((self.market_history, self.orders_history), axis=1)
95+
return state
96+
97+
# Get the data points for the given current_step
98+
def _next_observation(self):
99+
self.market_history.append([self.df.loc[self.current_step, 'Open'],
100+
self.df.loc[self.current_step, 'High'],
101+
self.df.loc[self.current_step, 'Low'],
102+
self.df.loc[self.current_step, 'Close'],
103+
self.df.loc[self.current_step, 'Volume']
104+
])
105+
obs = np.concatenate((self.market_history, self.orders_history), axis=1)
106+
return obs
107+
108+
# Execute one time step within the environment
109+
def step(self, action):
110+
self.crypto_bought = 0
111+
self.crypto_sold = 0
112+
self.current_step += 1
113+
114+
# Set the current price to a random price between open and close
115+
current_price = random.uniform(
116+
self.df.loc[self.current_step, 'Open'],
117+
self.df.loc[self.current_step, 'Close'])
118+
Date = self.df.loc[self.current_step, 'Date'] # for visualization
119+
High = self.df.loc[self.current_step, 'High'] # for visualization
120+
Low = self.df.loc[self.current_step, 'Low'] # for visualization
121+
122+
if action == 0: # Hold
123+
pass
124+
125+
elif action == 1 and self.balance > self.initial_balance/100:
126+
# Buy with 100% of current balance
127+
self.crypto_bought = self.balance / current_price
128+
self.balance -= self.crypto_bought * current_price
129+
self.crypto_held += self.crypto_bought
130+
self.trades.append({'Date' : Date, 'High' : High, 'Low' : Low, 'total': self.crypto_bought, 'type': "buy"})
131+
self.episode_orders += 1
132+
133+
elif action == 2 and self.crypto_held>0:
134+
# Sell 100% of current crypto held
135+
self.crypto_sold = self.crypto_held
136+
self.balance += self.crypto_sold * current_price
137+
self.crypto_held -= self.crypto_sold
138+
self.trades.append({'Date' : Date, 'High' : High, 'Low' : Low, 'total': self.crypto_sold, 'type': "sell"})
139+
self.episode_orders += 1
140+
141+
self.prev_net_worth = self.net_worth
142+
self.net_worth = self.balance + self.crypto_held * current_price
143+
144+
self.orders_history.append([self.balance, self.net_worth, self.crypto_bought, self.crypto_sold, self.crypto_held])
145+
#Write_to_file(Date, self.orders_history[-1])
146+
147+
# Calculate reward
148+
reward = self.net_worth - self.prev_net_worth
149+
150+
if self.net_worth <= self.initial_balance/2:
151+
done = True
152+
else:
153+
done = False
154+
155+
obs = self._next_observation() / self.normalize_value
156+
157+
return obs, reward, done
158+
159+
# render environment
160+
def render(self, visualize = False):
161+
#print(f'Step: {self.current_step}, Net Worth: {self.net_worth}')
162+
if visualize:
163+
Date = self.df.loc[self.current_step, 'Date']
164+
Open = self.df.loc[self.current_step, 'Open']
165+
Close = self.df.loc[self.current_step, 'Close']
166+
High = self.df.loc[self.current_step, 'High']
167+
Low = self.df.loc[self.current_step, 'Low']
168+
Volume = self.df.loc[self.current_step, 'Volume']
169+
170+
# Render the environment to the screen
171+
self.visualization.render(Date, Open, High, Low, Close, Volume, self.net_worth, self.trades)
172+
173+
def get_gaes(self, rewards, dones, values, next_values, gamma = 0.99, lamda = 0.95, normalize=True):
174+
deltas = [r + gamma * (1 - d) * nv - v for r, d, nv, v in zip(rewards, dones, next_values, values)]
175+
deltas = np.stack(deltas)
176+
gaes = copy.deepcopy(deltas)
177+
for t in reversed(range(len(deltas) - 1)):
178+
gaes[t] = gaes[t] + (1 - dones[t]) * gamma * lamda * gaes[t + 1]
179+
180+
target = gaes + values
181+
if normalize:
182+
gaes = (gaes - gaes.mean()) / (gaes.std() + 1e-8)
183+
return np.vstack(gaes), np.vstack(target)
184+
185+
def replay(self, states, actions, rewards, predictions, dones, next_states):
186+
# reshape memory to appropriate shape for training
187+
states = np.vstack(states)
188+
next_states = np.vstack(next_states)
189+
actions = np.vstack(actions)
190+
predictions = np.vstack(predictions)
191+
192+
# Compute discounted rewards
193+
#discounted_r = np.vstack(self.discount_rewards(rewards))
194+
195+
# Get Critic network predictions
196+
values = self.Critic.predict(states)
197+
next_values = self.Critic.predict(next_states)
198+
# Compute advantages
199+
#advantages = discounted_r - values
200+
advantages, target = self.get_gaes(rewards, dones, np.squeeze(values), np.squeeze(next_values))
201+
'''
202+
pylab.plot(target,'-')
203+
pylab.plot(advantages,'.')
204+
ax=pylab.gca()
205+
ax.grid(True)
206+
pylab.show()
207+
'''
208+
# stack everything to numpy array
209+
y_true = np.hstack([advantages, predictions, actions])
210+
211+
# training Actor and Critic networks
212+
a_loss = self.Actor.Actor.fit(states, y_true, epochs=self.epochs, verbose=0, shuffle=True)
213+
c_loss = self.Critic.Critic.fit(states, target, epochs=self.epochs, verbose=0, shuffle=True)
214+
215+
self.writer.add_scalar('Data/actor_loss_per_replay', np.sum(a_loss.history['loss']), self.replay_count)
216+
self.writer.add_scalar('Data/critic_loss_per_replay', np.sum(c_loss.history['loss']), self.replay_count)
217+
self.replay_count += 1
218+
219+
def act(self, state):
220+
# Use the network to predict the next action to take, using the model
221+
prediction = self.Actor.predict(np.expand_dims(state, axis=0))[0]
222+
action = np.random.choice(self.action_space, p=prediction)
223+
return action, prediction
224+
225+
def save(self, name="Crypto_trader"):
226+
# save keras model weights
227+
self.Actor.Actor.save_weights(f"{name}_Actor.h5")
228+
self.Critic.Critic.save_weights(f"{name}_Critic.h5")
229+
230+
def load(self, name="Crypto_trader"):
231+
# load keras model weights
232+
self.Actor.Actor.load_weights(f"{name}_Actor.h5")
233+
self.Critic.Critic.load_weights(f"{name}_Critic.h5")
234+
235+
def Random_games(env, visualize, train_episodes = 50):
236+
average_net_worth = 0
237+
for episode in range(train_episodes):
238+
state = env.reset()
239+
while True:
240+
env.render(visualize)
241+
action = np.random.randint(3, size=1)[0]
242+
state, reward, done = env.step(action)
243+
if env.current_step == env.end_step:
244+
average_net_worth += env.net_worth
245+
print("net_worth:", episode, env.net_worth)
246+
break
247+
248+
print("average {} episodes random net_worth: {}".format(train_episodes, average_net_worth/train_episodes))
249+
250+
def train_agent(env, visualize=False, train_episodes = 50, training_batch_size=500):
251+
env.create_writer() # create TensorBoard writer
252+
total_average = deque(maxlen=100) # save recent 100 episodes net worth
253+
best_average = 0 # used to track best average net worth
254+
for episode in range(train_episodes):
255+
state = env.reset(env_steps_size = training_batch_size)
256+
257+
states, actions, rewards, predictions, dones, next_states = [], [], [], [], [], []
258+
for t in range(training_batch_size):
259+
env.render(visualize)
260+
action, prediction = env.act(state)
261+
next_state, reward, done = env.step(action)
262+
states.append(np.expand_dims(state, axis=0))
263+
next_states.append(np.expand_dims(next_state, axis=0))
264+
action_onehot = np.zeros(3)
265+
action_onehot[action] = 1
266+
actions.append(action_onehot)
267+
rewards.append(reward)
268+
dones.append(done)
269+
predictions.append(prediction)
270+
state = next_state
271+
272+
env.replay(states, actions, rewards, predictions, dones, next_states)
273+
total_average.append(env.net_worth)
274+
average = np.average(total_average)
275+
276+
env.writer.add_scalar('Data/average net_worth', average, episode)
277+
env.writer.add_scalar('Data/episode_orders', env.episode_orders, episode)
278+
279+
print("net worth {} {:.2f} {:.2f} {}".format(episode, env.net_worth, average, env.episode_orders))
280+
if episode > len(total_average):
281+
if best_average < average:
282+
best_average = average
283+
print("Saving model")
284+
env.save()
285+
286+
def test_agent(env, visualize=True, test_episodes=10):
287+
env.load() # load the model
288+
average_net_worth = 0
289+
for episode in range(test_episodes):
290+
state = env.reset()
291+
while True:
292+
env.render(visualize)
293+
action, prediction = env.act(state)
294+
state, reward, done = env.step(action)
295+
if env.current_step == env.end_step:
296+
average_net_worth += env.net_worth
297+
print("net_worth:", episode, env.net_worth, env.episode_orders)
298+
break
299+
300+
print("average {} episodes agent net_worth: {}".format(test_episodes, average_net_worth/test_episodes))
301+
302+
df = pd.read_csv('./pricedata.csv')
303+
df = df.sort_values('Date')
304+
305+
lookback_window_size = 50
306+
train_df = df[:-720-lookback_window_size]
307+
test_df = df[-720-lookback_window_size:] # 30 days
308+
309+
train_env = CustomEnv(train_df, lookback_window_size=lookback_window_size)
310+
test_env = CustomEnv(test_df, lookback_window_size=lookback_window_size)
311+
312+
#train_agent(train_env, visualize=False, train_episodes=20000, training_batch_size=500)
313+
test_agent(test_env, visualize=True, test_episodes=1000)
314+
Random_games(test_env, visualize=False, train_episodes = 1000)

0 commit comments

Comments
 (0)