Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
22 changes: 22 additions & 0 deletions py/torch_tensorrt/dynamo/conversion/aten_ops_converters.py
Original file line number Diff line number Diff line change
Expand Up @@ -881,8 +881,30 @@ def aten_ops_select(
)


def index_put_indices_continuity_validator(
node: Node, settings: Optional[CompilationSettings] = None
) -> bool:
idxs = node.args[1] # this is a list of indices
present_indices = [idx is not None for idx in idxs]
if len(present_indices) == 0:
return True
first_present_index = next((i for i, v in enumerate(present_indices) if v), None)
if first_present_index is None:
return False
rev_index = next((i for i, v in enumerate(reversed(present_indices)) if v), None)
if rev_index is None:
return False
last_present_index = len(present_indices) - 1 - rev_index
for i in range(first_present_index, last_present_index + 1):
if not present_indices[i]:
return False
return True


@dynamo_tensorrt_converter(
torch.ops.aten.index_put.default,
capability_validator=index_put_indices_continuity_validator,
supports_dynamic_shapes=True,
)
@enforce_tensor_types(
{
Expand Down
189 changes: 189 additions & 0 deletions tests/py/dynamo/conversion/test_index_put_aten.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,7 @@
import torch
from parameterized import param, parameterized
from torch.testing._internal.common_utils import run_tests
from torch_tensorrt import Input

from .harness import DispatchTestCase

Expand Down Expand Up @@ -245,5 +246,193 @@ def forward(self, source_tensor, value_tensor):
)


class TestIndexIndexPutDynamicConverter(DispatchTestCase):
@parameterized.expand(
[
param(
test_name="1d_indices_single",
indices_tensor=(torch.tensor([0], dtype=torch.int32),),
value_tensor=torch.tensor([1], dtype=torch.float32),
input_min_shape=(1,),
input_opt_shape=(5,),
input_max_shape=(5,),
),
param(
test_name="1d_indices_multiple",
indices_tensor=(torch.tensor([0, 3], dtype=torch.int32),),
value_tensor=torch.tensor([1, 3], dtype=torch.float32),
input_min_shape=(1,),
input_opt_shape=(5,),
input_max_shape=(5,),
),
param(
test_name="2d_indices_single",
indices_tensor=(
torch.tensor([2], dtype=torch.int32),
torch.tensor([0], dtype=torch.int32),
),
value_tensor=torch.tensor([3], dtype=torch.float32),
input_min_shape=(2, 5),
input_opt_shape=(5, 5),
input_max_shape=(5, 5),
),
param(
test_name="2d_indices_multiple",
indices_tensor=(
torch.tensor([0, 2, 2], dtype=torch.int32),
torch.tensor([2, 0, 2], dtype=torch.int32),
),
value_tensor=torch.tensor([1, 3, 4], dtype=torch.float32),
input_min_shape=(2, 5),
input_opt_shape=(5, 5),
input_max_shape=(5, 5),
),
param(
test_name="3d_indices_single",
indices_tensor=(
torch.tensor([1], dtype=torch.int32),
torch.tensor([2], dtype=torch.int32),
torch.tensor([2], dtype=torch.int32),
),
value_tensor=torch.tensor([7], dtype=torch.float32),
input_min_shape=(2, 3, 3),
input_opt_shape=(3, 3, 3),
input_max_shape=(3, 3, 3),
),
param(
test_name="3d_indices_multiple",
indices_tensor=(
torch.tensor([0, 1, 1], dtype=torch.int32),
torch.tensor([1, 2, 1], dtype=torch.int32),
torch.tensor([2, 0, 2], dtype=torch.int32),
),
value_tensor=torch.tensor([5, 7, 2], dtype=torch.float32),
input_min_shape=(2, 3, 3),
input_opt_shape=(3, 3, 3),
input_max_shape=(3, 3, 3),
),
param(
test_name="4d_indices_single",
indices_tensor=(
torch.tensor([1], dtype=torch.int32),
torch.tensor([1], dtype=torch.int32),
torch.tensor([0], dtype=torch.int32),
torch.tensor([1], dtype=torch.int32),
),
value_tensor=torch.tensor([5], dtype=torch.float32),
input_min_shape=(1, 2, 2, 2),
input_opt_shape=(2, 2, 2, 2),
input_max_shape=(2, 2, 2, 2),
),
param(
test_name="4d_indices_multiple",
indices_tensor=(
torch.tensor([0, 1], dtype=torch.int32),
torch.tensor([1, 1], dtype=torch.int32),
torch.tensor([1, 0], dtype=torch.int32),
torch.tensor([1, 0], dtype=torch.int32),
),
value_tensor=torch.tensor([5, 7], dtype=torch.float32),
input_min_shape=(1, 2, 2, 2),
input_opt_shape=(2, 2, 2, 2),
input_max_shape=(2, 2, 2, 2),
),
param(
test_name="negative_indices",
indices_tensor=(
torch.tensor([-1, -2], dtype=torch.int32),
torch.tensor([2, 0], dtype=torch.int32),
),
value_tensor=torch.tensor([1, 3], dtype=torch.float32),
input_min_shape=(2, 5),
input_opt_shape=(5, 5),
input_max_shape=(5, 5),
),
param(
test_name="mixed_indices",
indices_tensor=(
torch.tensor([0, 1, -1, -2], dtype=torch.int32),
torch.tensor([0, -1, 2, 1], dtype=torch.int32),
),
value_tensor=torch.tensor([2, 4, 6, 8], dtype=torch.float32),
input_min_shape=(2, 4),
input_opt_shape=(4, 4),
input_max_shape=(4, 4),
),
param(
test_name="1d_indices_float",
indices_tensor=(torch.tensor([0, 3], dtype=torch.int32),),
value_tensor=torch.tensor([1.5, 3.5], dtype=torch.float32),
input_min_shape=(1,),
input_opt_shape=(5,),
input_max_shape=(5,),
),
param(
test_name="2d_indices_float",
indices_tensor=(
torch.tensor([0, 2], dtype=torch.int32),
torch.tensor([2, 0], dtype=torch.int32),
),
value_tensor=torch.tensor([1.5, 3.5], dtype=torch.float32),
input_min_shape=(1, 5),
input_opt_shape=(5, 5),
input_max_shape=(5, 5),
),
param(
test_name="3d_indices_float",
indices_tensor=(
torch.tensor([0, 1], dtype=torch.int32),
torch.tensor([1, 2], dtype=torch.int32),
torch.tensor([2, 0], dtype=torch.int32),
),
value_tensor=torch.tensor([5.5, 7.5], dtype=torch.float32),
input_min_shape=(1, 3, 3),
input_opt_shape=(3, 3, 3),
input_max_shape=(3, 3, 3),
),
param(
test_name="4d_indices_float",
indices_tensor=(
torch.tensor([0, 1], dtype=torch.int32),
torch.tensor([1, 0], dtype=torch.int32),
torch.tensor([0, 1], dtype=torch.int32),
torch.tensor([1, 0], dtype=torch.int32),
),
value_tensor=torch.tensor([5.5, 7.5], dtype=torch.float32),
input_min_shape=(1, 1, 2, 2),
input_opt_shape=(2, 2, 2, 2),
input_max_shape=(2, 2, 2, 2),
),
]
)
def test_index_constant_dynamic(
self,
test_name,
indices_tensor,
value_tensor,
input_min_shape,
input_opt_shape,
input_max_shape,
):
class TestModule(torch.nn.Module):
def __init__(self):
super().__init__()

def forward(self, input):
return torch.ops.aten.index_put.default(
input, indices_tensor, value_tensor, accumulate=False
)

input_specs = [
Input(
min_shape=input_min_shape,
opt_shape=input_opt_shape,
max_shape=input_max_shape,
dtype=torch.float32,
),
]
self.run_test_with_dynamic_shape(TestModule(), input_specs)


if __name__ == "__main__":
run_tests()
Loading