Skip to content

[bc-breaking] Generalize QAT configs beyond intx quantization #2608

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
wants to merge 1 commit into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 4 additions & 4 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -180,10 +180,10 @@ Post-training quantization can result in a fast and compact model, but may also

```python
from torchao.quantization import quantize_
from torchao.quantization.qat import FakeQuantizeConfig, IntXQuantizationAwareTrainingConfig
activation_config = FakeQuantizeConfig(torch.int8, "per_token", is_symmetric=False)
weight_config = FakeQuantizeConfig(torch.int4, group_size=32)
qat_config = IntXQuantizationAwareTrainingConfig(activation_config, weight_config),
from torchao.quantization.qat import IntxFakeQuantizeConfig, QuantizationAwareTrainingConfig
activation_config = IntxFakeQuantizeConfig(torch.int8, "per_token", is_symmetric=False)
weight_config = IntxFakeQuantizeConfig(torch.int4, group_size=32)
qat_config = QuantizationAwareTrainingConfig(activation_config, weight_config),
quantize_(my_model, qat_config)
```

Expand Down
6 changes: 3 additions & 3 deletions docs/source/api_ref_qat.rst
Original file line number Diff line number Diff line change
Expand Up @@ -15,16 +15,16 @@ please refer to the `QAT README <https://github.com/pytorch/ao/blob/main/torchao
:toctree: generated/
:nosignatures:

IntXQuantizationAwareTrainingConfig
FromIntXQuantizationAwareTrainingConfig
QuantizationAwareTrainingConfig
FromQuantizationAwareTrainingConfig

Custom QAT APIs
---------------
.. autosummary::
:toctree: generated/
:nosignatures:

FakeQuantizeConfig
IntxFakeQuantizeConfig
FakeQuantizedLinear
FakeQuantizedEmbedding
FakeQuantizer
Expand Down
12 changes: 6 additions & 6 deletions test/prototype/test_parq.py
Original file line number Diff line number Diff line change
Expand Up @@ -30,9 +30,9 @@
from torchao.prototype.parq.quant.uniform_torchao import _BIT_WIDTH_TO_DTYPE
from torchao.quantization.granularity import PerGroup
from torchao.quantization.qat import (
FakeQuantizeConfig,
FromIntXQuantizationAwareTrainingConfig,
IntXQuantizationAwareTrainingConfig,
FromQuantizationAwareTrainingConfig,
IntxFakeQuantizeConfig,
QuantizationAwareTrainingConfig,
)
from torchao.quantization.quant_api import (
Int8DynamicActivationIntxWeightConfig,
Expand Down Expand Up @@ -393,15 +393,15 @@ def test_int8_dynamic_activation_intx_e2e(
optimizer.step()

# apply torchao quantized activations on top
activation_config = FakeQuantizeConfig(
activation_config = IntxFakeQuantizeConfig(
torch.int8,
granularity="per_token",
mapping_type=config.act_mapping_type,
)
filter_fn = optimizer.get_filter_fn(model)
quantize_(
model,
IntXQuantizationAwareTrainingConfig(activation_config=activation_config),
QuantizationAwareTrainingConfig(activation_config=activation_config),
filter_fn=filter_fn,
)
out = model(x)
Expand All @@ -410,7 +410,7 @@ def test_int8_dynamic_activation_intx_e2e(
# equivalent to torchao's convert step
model.eval()
optimizer.restore_latent_params()
quantize_(model, FromIntXQuantizationAwareTrainingConfig(), filter_fn=filter_fn)
quantize_(model, FromQuantizationAwareTrainingConfig(), filter_fn=filter_fn)
quantize_(model, config, filter_fn=filter_fn)
converted_out = model(x)
torch.testing.assert_close(converted_out, ref_out, atol=0, rtol=0)
Expand Down
Loading
Loading