Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
18 changes: 14 additions & 4 deletions benchmarks/benchmark_low_bit_adam.py
Original file line number Diff line number Diff line change
Expand Up @@ -120,11 +120,18 @@ def get_parser():

def get_dloader(args, training: bool):
transforms = [v2.ToImage()]
input_size = (
args.data_config["input_size"][1] if args.data_config is not None else 224
) # Standard ViT input size

if training:
transforms.extend([v2.RandomResizedCrop(224), v2.RandomHorizontalFlip()])
transforms.extend([v2.RandomResizedCrop(input_size), v2.RandomHorizontalFlip()])
else:
transforms.extend([v2.Resize(256), v2.CenterCrop(224)])
# For validation, resize to slightly larger then center crop
if "dinov2" in args.model.lower():
input_size = 518 # DINOv2 models expect 518x518
resize_size = int(input_size * 256 / 224) # Scale proportionally (584 for 518)
transforms.extend([v2.Resize(resize_size), v2.CenterCrop(input_size)])

transforms.append(v2.ToDtype(torch.float32, scale=True))
transforms.append(
Expand Down Expand Up @@ -207,12 +214,15 @@ def evaluate_model(model, args):
dir="/tmp",
mode="disabled" if args.project is None else None,
)
dloader = get_dloader(args, True)
print(f"Train dataset: {len(dloader.dataset):,} images")

model = timm.create_model(
args.model, pretrained=True, num_classes=45, **args.model_kwargs
)
args.data_config = timm.data.resolve_model_data_config(model)

dloader = get_dloader(args, True)
print(f"Train dataset: {len(dloader.dataset):,} images")

if args.checkpoint_activations:
model.set_grad_checkpointing()
if args.full_bf16:
Expand Down
Loading