Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
26 changes: 18 additions & 8 deletions mnist/main.py
Original file line number Diff line number Diff line change
Expand Up @@ -90,8 +90,12 @@ def main():
help='random seed (default: 1)')
parser.add_argument('--log-interval', type=int, default=10, metavar='N',
help='how many batches to wait before logging training status')
parser.add_argument('--save-model', action='store_true',
parser.add_argument('--save-model', action='store_true',
help='For Saving the current Model')
parser.add_argument('--model-path', type=str, default='mnist_cnn.pt',
help='path to save the trained model')
parser.add_argument('--load-model', type=str, default=None,
help='Path to load a pre-trained model')
args = parser.parse_args()

use_accel = not args.no_accel and torch.accelerator.is_available()
Expand Down Expand Up @@ -125,16 +129,22 @@ def main():
test_loader = torch.utils.data.DataLoader(dataset2, **test_kwargs)

model = Net().to(device)
optimizer = optim.Adadelta(model.parameters(), lr=args.lr)

scheduler = StepLR(optimizer, step_size=1, gamma=args.gamma)
for epoch in range(1, args.epochs + 1):
train(args, model, device, train_loader, optimizer, epoch)
if args.load_model:
print(f"Loading model from {args.load_model}")
model.load_state_dict(torch.load(args.load_model, map_location=device))
test(model, device, test_loader)
scheduler.step()
else:
optimizer = optim.Adadelta(model.parameters(), lr=args.lr)

scheduler = StepLR(optimizer, step_size=1, gamma=args.gamma)
for epoch in range(1, args.epochs + 1):
train(args, model, device, train_loader, optimizer, epoch)
test(model, device, test_loader)
scheduler.step()

if args.save_model:
torch.save(model.state_dict(), "mnist_cnn.pt")
if args.save_model:
torch.save(model.state_dict(), args.model_path)


if __name__ == '__main__':
Expand Down