|
| 1 | +# Copyright (c) Meta Platforms, Inc. and affiliates. |
| 2 | +# All rights reserved. |
| 3 | +# |
| 4 | +# This source code is licensed under the BSD-style license found in the |
| 5 | +# LICENSE file in the root directory of this source tree. |
| 6 | + |
| 7 | +# pyre-unsafe |
| 8 | + |
| 9 | +from typing import List, Optional, Tuple, Union |
| 10 | + |
| 11 | +import torch |
| 12 | +from executorch.backends.test.suite.flow import TestFlow |
| 13 | + |
| 14 | +from executorch.backends.test.suite.operators import ( |
| 15 | + dtype_test, |
| 16 | + operator_test, |
| 17 | + OperatorTest, |
| 18 | +) |
| 19 | + |
| 20 | + |
| 21 | +class AmaxModel(torch.nn.Module): |
| 22 | + def __init__( |
| 23 | + self, |
| 24 | + dim: Optional[Union[int, Tuple[int, ...], List[int]]] = None, |
| 25 | + keepdim: bool = False, |
| 26 | + ): |
| 27 | + super().__init__() |
| 28 | + self.dim = dim |
| 29 | + self.keepdim = keepdim |
| 30 | + |
| 31 | + def forward(self, x): |
| 32 | + return torch.amax(x, dim=self.dim, keepdim=self.keepdim) |
| 33 | + |
| 34 | + |
| 35 | +@operator_test |
| 36 | +class Amax(OperatorTest): |
| 37 | + @dtype_test |
| 38 | + def test_amax_dtype(self, flow: TestFlow, dtype) -> None: |
| 39 | + self._test_op( |
| 40 | + AmaxModel().to(dtype), |
| 41 | + (torch.rand(10, 10).to(dtype),), |
| 42 | + flow, |
| 43 | + ) |
| 44 | + |
| 45 | + def test_amax_basic(self, flow: TestFlow) -> None: |
| 46 | + self._test_op( |
| 47 | + AmaxModel(), |
| 48 | + (torch.randn(10, 10),), |
| 49 | + flow, |
| 50 | + ) |
| 51 | + |
| 52 | + def test_amax_dim(self, flow: TestFlow) -> None: |
| 53 | + self._test_op( |
| 54 | + AmaxModel(dim=0), |
| 55 | + (torch.randn(5, 10),), |
| 56 | + flow, |
| 57 | + ) |
| 58 | + |
| 59 | + self._test_op( |
| 60 | + AmaxModel(dim=1), |
| 61 | + (torch.randn(5, 10),), |
| 62 | + flow, |
| 63 | + ) |
| 64 | + |
| 65 | + self._test_op( |
| 66 | + AmaxModel(dim=0), |
| 67 | + (torch.randn(3, 4, 5),), |
| 68 | + flow, |
| 69 | + ) |
| 70 | + |
| 71 | + self._test_op( |
| 72 | + AmaxModel(dim=1), |
| 73 | + (torch.randn(3, 4, 5),), |
| 74 | + flow, |
| 75 | + ) |
| 76 | + |
| 77 | + self._test_op( |
| 78 | + AmaxModel(dim=2), |
| 79 | + (torch.randn(3, 4, 5),), |
| 80 | + flow, |
| 81 | + ) |
| 82 | + |
| 83 | + self._test_op( |
| 84 | + AmaxModel(dim=1), |
| 85 | + (torch.randn(2, 3, 4, 5),), |
| 86 | + flow, |
| 87 | + ) |
| 88 | + |
| 89 | + self._test_op( |
| 90 | + AmaxModel(dim=-1), |
| 91 | + (torch.randn(3, 4, 5),), |
| 92 | + flow, |
| 93 | + ) |
| 94 | + |
| 95 | + self._test_op( |
| 96 | + AmaxModel(dim=-2), |
| 97 | + (torch.randn(3, 4, 5),), |
| 98 | + flow, |
| 99 | + ) |
| 100 | + |
| 101 | + def test_amax_multi_dim(self, flow: TestFlow) -> None: |
| 102 | + self._test_op( |
| 103 | + AmaxModel(dim=(0, 1)), |
| 104 | + (torch.randn(3, 4, 5),), |
| 105 | + flow, |
| 106 | + ) |
| 107 | + |
| 108 | + self._test_op( |
| 109 | + AmaxModel(dim=(0, 2)), |
| 110 | + (torch.randn(3, 4, 5),), |
| 111 | + flow, |
| 112 | + ) |
| 113 | + |
| 114 | + self._test_op( |
| 115 | + AmaxModel(dim=(1, 2)), |
| 116 | + (torch.randn(3, 4, 5),), |
| 117 | + flow, |
| 118 | + ) |
| 119 | + |
| 120 | + self._test_op( |
| 121 | + AmaxModel(dim=(1, 3)), |
| 122 | + (torch.randn(2, 3, 4, 5),), |
| 123 | + flow, |
| 124 | + ) |
| 125 | + |
| 126 | + self._test_op( |
| 127 | + AmaxModel(dim=(0, 2)), |
| 128 | + (torch.randn(2, 3, 4, 5),), |
| 129 | + flow, |
| 130 | + ) |
| 131 | + |
| 132 | + self._test_op( |
| 133 | + AmaxModel(dim=(-1, -3)), |
| 134 | + (torch.randn(2, 3, 4, 5),), |
| 135 | + flow, |
| 136 | + ) |
| 137 | + |
| 138 | + self._test_op( |
| 139 | + AmaxModel(dim=(0, 1, 2, 3)), |
| 140 | + (torch.randn(2, 3, 4, 5),), |
| 141 | + flow, |
| 142 | + ) |
| 143 | + |
| 144 | + def test_amax_keepdim(self, flow: TestFlow) -> None: |
| 145 | + self._test_op( |
| 146 | + AmaxModel(dim=0, keepdim=True), |
| 147 | + (torch.randn(5, 10),), |
| 148 | + flow, |
| 149 | + ) |
| 150 | + |
| 151 | + self._test_op( |
| 152 | + AmaxModel(dim=1, keepdim=True), |
| 153 | + (torch.randn(5, 10),), |
| 154 | + flow, |
| 155 | + ) |
| 156 | + |
| 157 | + self._test_op( |
| 158 | + AmaxModel(dim=1, keepdim=True), |
| 159 | + (torch.randn(3, 4, 5),), |
| 160 | + flow, |
| 161 | + ) |
| 162 | + |
| 163 | + self._test_op( |
| 164 | + AmaxModel(dim=2, keepdim=True), |
| 165 | + (torch.randn(2, 3, 4, 5),), |
| 166 | + flow, |
| 167 | + ) |
| 168 | + |
| 169 | + self._test_op( |
| 170 | + AmaxModel(dim=(1, 2), keepdim=True), |
| 171 | + (torch.randn(3, 4, 5),), |
| 172 | + flow, |
| 173 | + ) |
| 174 | + |
| 175 | + def test_amax_shapes(self, flow: TestFlow) -> None: |
| 176 | + self._test_op( |
| 177 | + AmaxModel(), |
| 178 | + (torch.randn(20),), |
| 179 | + flow, |
| 180 | + ) |
| 181 | + self._test_op( |
| 182 | + AmaxModel(dim=0), |
| 183 | + (torch.randn(20),), |
| 184 | + flow, |
| 185 | + ) |
| 186 | + |
| 187 | + self._test_op( |
| 188 | + AmaxModel(), |
| 189 | + (torch.randn(5, 10),), |
| 190 | + flow, |
| 191 | + ) |
| 192 | + |
| 193 | + self._test_op( |
| 194 | + AmaxModel(), |
| 195 | + (torch.randn(3, 4, 5),), |
| 196 | + flow, |
| 197 | + ) |
| 198 | + |
| 199 | + self._test_op( |
| 200 | + AmaxModel(), |
| 201 | + (torch.randn(2, 3, 4, 5),), |
| 202 | + flow, |
| 203 | + ) |
| 204 | + |
| 205 | + self._test_op( |
| 206 | + AmaxModel(), |
| 207 | + (torch.randn(2, 2, 3, 4, 5),), |
| 208 | + flow, |
| 209 | + ) |
| 210 | + |
| 211 | + def test_amax_values(self, flow: TestFlow) -> None: |
| 212 | + x = torch.tensor([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]]) |
| 213 | + self._test_op( |
| 214 | + AmaxModel(), |
| 215 | + (x,), |
| 216 | + flow, |
| 217 | + ) |
| 218 | + self._test_op( |
| 219 | + AmaxModel(dim=0), |
| 220 | + (x,), |
| 221 | + flow, |
| 222 | + ) |
| 223 | + self._test_op( |
| 224 | + AmaxModel(dim=1), |
| 225 | + (x,), |
| 226 | + flow, |
| 227 | + ) |
| 228 | + |
| 229 | + x = torch.tensor([[3.0, 2.0, 3.0], [6.0, 6.0, 5.0]]) |
| 230 | + self._test_op( |
| 231 | + AmaxModel(), |
| 232 | + (x,), |
| 233 | + flow, |
| 234 | + ) |
| 235 | + self._test_op( |
| 236 | + AmaxModel(dim=0), |
| 237 | + (x,), |
| 238 | + flow, |
| 239 | + ) |
| 240 | + self._test_op( |
| 241 | + AmaxModel(dim=1), |
| 242 | + (x,), |
| 243 | + flow, |
| 244 | + ) |
| 245 | + |
| 246 | + x = torch.tensor([[-3.0, -2.0, -1.0], [-6.0, -5.0, -4.0]]) |
| 247 | + self._test_op( |
| 248 | + AmaxModel(), |
| 249 | + (x,), |
| 250 | + flow, |
| 251 | + ) |
| 252 | + self._test_op( |
| 253 | + AmaxModel(dim=0), |
| 254 | + (x,), |
| 255 | + flow, |
| 256 | + ) |
| 257 | + self._test_op( |
| 258 | + AmaxModel(dim=1), |
| 259 | + (x,), |
| 260 | + flow, |
| 261 | + ) |
| 262 | + |
| 263 | + x = torch.tensor([[-3.0, 2.0, -1.0], [6.0, -5.0, 4.0]]) |
| 264 | + self._test_op( |
| 265 | + AmaxModel(), |
| 266 | + (x,), |
| 267 | + flow, |
| 268 | + ) |
| 269 | + self._test_op( |
| 270 | + AmaxModel(dim=0), |
| 271 | + (x,), |
| 272 | + flow, |
| 273 | + ) |
| 274 | + self._test_op( |
| 275 | + AmaxModel(dim=1), |
| 276 | + (x,), |
| 277 | + flow, |
| 278 | + ) |
| 279 | + |
| 280 | + def test_amax_edge_cases(self, flow: TestFlow) -> None: |
| 281 | + x = torch.ones(3, 4) |
| 282 | + self._test_op( |
| 283 | + AmaxModel(), |
| 284 | + (x,), |
| 285 | + flow, |
| 286 | + ) |
| 287 | + self._test_op( |
| 288 | + AmaxModel(dim=0), |
| 289 | + (x,), |
| 290 | + flow, |
| 291 | + ) |
| 292 | + self._test_op( |
| 293 | + AmaxModel(dim=1), |
| 294 | + (x,), |
| 295 | + flow, |
| 296 | + ) |
| 297 | + |
| 298 | + x = torch.zeros(3, 4) |
| 299 | + self._test_op( |
| 300 | + AmaxModel(), |
| 301 | + (x,), |
| 302 | + flow, |
| 303 | + ) |
| 304 | + self._test_op( |
| 305 | + AmaxModel(dim=0), |
| 306 | + (x,), |
| 307 | + flow, |
| 308 | + ) |
| 309 | + self._test_op( |
| 310 | + AmaxModel(dim=1), |
| 311 | + (x,), |
| 312 | + flow, |
| 313 | + ) |
| 314 | + |
| 315 | + x = torch.tensor([[1.0, float("inf"), 3.0], [4.0, 5.0, float("inf")]]) |
| 316 | + self._test_op( |
| 317 | + AmaxModel(), |
| 318 | + (x,), |
| 319 | + flow, |
| 320 | + ) |
| 321 | + self._test_op( |
| 322 | + AmaxModel(dim=0), |
| 323 | + (x,), |
| 324 | + flow, |
| 325 | + ) |
| 326 | + self._test_op( |
| 327 | + AmaxModel(dim=1), |
| 328 | + (x,), |
| 329 | + flow, |
| 330 | + ) |
| 331 | + |
| 332 | + x = torch.tensor([[1.0, float("-inf"), 3.0], [4.0, 5.0, float("-inf")]]) |
| 333 | + self._test_op( |
| 334 | + AmaxModel(), |
| 335 | + (x,), |
| 336 | + flow, |
| 337 | + ) |
| 338 | + self._test_op( |
| 339 | + AmaxModel(dim=0), |
| 340 | + (x,), |
| 341 | + flow, |
| 342 | + ) |
| 343 | + self._test_op( |
| 344 | + AmaxModel(dim=1), |
| 345 | + (x,), |
| 346 | + flow, |
| 347 | + ) |
| 348 | + |
| 349 | + x = torch.tensor([[1.0, float("nan"), 3.0], [4.0, 5.0, float("nan")]]) |
| 350 | + self._test_op( |
| 351 | + AmaxModel(), |
| 352 | + (x,), |
| 353 | + flow, |
| 354 | + ) |
| 355 | + self._test_op( |
| 356 | + AmaxModel(dim=0), |
| 357 | + (x,), |
| 358 | + flow, |
| 359 | + ) |
| 360 | + self._test_op( |
| 361 | + AmaxModel(dim=1), |
| 362 | + (x,), |
| 363 | + flow, |
| 364 | + ) |
| 365 | + |
| 366 | + x = torch.tensor([5.0]) |
| 367 | + self._test_op( |
| 368 | + AmaxModel(), |
| 369 | + (x,), |
| 370 | + flow, |
| 371 | + ) |
| 372 | + self._test_op( |
| 373 | + AmaxModel(dim=0), |
| 374 | + (x,), |
| 375 | + flow, |
| 376 | + ) |
| 377 | + |
| 378 | + def test_amax_scalar(self, flow: TestFlow) -> None: |
| 379 | + self._test_op( |
| 380 | + AmaxModel(), |
| 381 | + (torch.tensor([5.0]),), |
| 382 | + flow, |
| 383 | + ) |
| 384 | + self._test_op( |
| 385 | + AmaxModel(dim=0), |
| 386 | + (torch.tensor([5.0]),), |
| 387 | + flow, |
| 388 | + ) |
0 commit comments