Skip to content
Merged
32 changes: 11 additions & 21 deletions backends/vulkan/runtime/graph/ops/glsl/conv2d_pw.glsl
Original file line number Diff line number Diff line change
Expand Up @@ -14,7 +14,6 @@

#define TILE_SIZE_X ${TILE_SIZE_X}
#define TILE_SIZE_Y ${TILE_SIZE_Y}
#define LOCAL_WG_SIZE 64

#define op(X, A, B) ${OPERATOR}

Expand All @@ -39,53 +38,46 @@ layout(push_constant) uniform restrict Block {

layout(local_size_x_id = 0, local_size_y_id = 1, local_size_z_id = 2) in;

// For performance improvement, reduce register usage by caching positions in shared memory.
// Offset index by 1 every 16 points to avoid bank access conflict.
#define offset_pos_index(index) (index + ((index) >> 4))
shared ivec3 pos_shared[offset_pos_index(LOCAL_WG_SIZE * TILE_SIZE_X * TILE_SIZE_Y)];

/*
* Computes a 2D pointwise convolution of an NxN output tile. Calculating an
* output tile for pointwise convolution is more efficient because the kernel
* size is only 1x1, making it easier to re-use loaded texels from t_kernel.
*/
void main() {
const ivec2 out_limits_scaled = (out_limits.xy + ivec2(TILE_SIZE_X - 1, TILE_SIZE_Y - 1)) / ivec2(TILE_SIZE_X, TILE_SIZE_Y);
const uint shared_mem_stride = LOCAL_WG_SIZE;

const uint div_by_x = gl_GlobalInvocationID.x / out_limits_scaled.x;
const ivec3 gpos = ivec3(
gl_GlobalInvocationID.x % out_limits_scaled.x,
div_by_x % out_limits_scaled.y,
div_by_x / out_limits_scaled.y);

// If the top left position is out of bounds, then this invocation will have
// no work to do.
if (gpos.z >= out_limits.z) {
return;
}

// Output position for TILE_SIZE = 2
// +--------+--------+
// | pos[0] | pos[1] |
// +--------+--------+
// | pos[2] | pos[3] |
// +--------+--------+
ivec2 pos[TILE_SIZE_X * TILE_SIZE_Y];
ivec3 pos[TILE_SIZE_X * TILE_SIZE_Y];
for (int y = 0, i = 0; y < TILE_SIZE_Y; ++y) {
for (int x = 0; x < TILE_SIZE_X; ++x) {
pos[i] = ivec2(gpos.x * TILE_SIZE_X + x, gpos.y * TILE_SIZE_Y + y);
pos_shared[offset_pos_index((shared_mem_stride * i) + gl_LocalInvocationIndex)] = ivec3(pos[i], gpos.z);
pos[i] = ivec3(gpos.x * TILE_SIZE_X + x, gpos.y * TILE_SIZE_Y + y, gpos.z);
i++;
}
}

// If the top left position is out of bounds, then this invocation will have
// no work to do.
if (gpos.z >= out_limits.z) {
return;
}

// Compute the index of the input texture that needs to be loaded for each
// output position. Note that negative indices can be produced indicating that
// the top-left element is in a region added by padding.
ivec2 ipos[TILE_SIZE_X * TILE_SIZE_Y];
for (int i = 0; i < TILE_SIZE_X * TILE_SIZE_Y; ++i) {
ipos[i] = pos[i] * stride - padding;
ipos[i] = pos[i].xy * stride - padding;
}

// Final output array where each element is a tensor value.
Expand Down Expand Up @@ -171,10 +163,8 @@ void main() {
}

for (int i = 0; i < TILE_SIZE_X * TILE_SIZE_Y; ++i) {
const uint index = (shared_mem_stride * i) + gl_LocalInvocationIndex;
const ivec3 pos = pos_shared[offset_pos_index(index)];
if (all(lessThan(pos, out_limits.xyz))) {
imageStore(t_out, pos, op(vec4(sum[i * 4], sum[i * 4 + 1], sum[i * 4 + 2], sum[i * 4 + 3]), out_min, out_max));
if (all(lessThan(pos[i], out_limits.xyz))) {
imageStore(t_out, pos[i], op(vec4(sum[i * 4], sum[i * 4 + 1], sum[i * 4 + 2], sum[i * 4 + 3]), out_min, out_max));
}
}
}
Loading