Skip to content

Conversation

@pytorchbot
Copy link
Collaborator

@pytorchbot pytorchbot commented Jun 26, 2025

This PR was created by the merge bot to help merge the original PR into the main branch.
ghstack PR number: #11984 by @SS-JIA
^ Please use this as the source of truth for the PR details, comments, and reviews
ghstack PR base: https://github.com/pytorch/executorch/tree/gh/SS-JIA/250/base
ghstack PR head: https://github.com/pytorch/executorch/tree/gh/SS-JIA/250/head
Merge bot PR base: https://github.com/pytorch/executorch/tree/gh/SS-JIA/249/orig
Merge bot PR head: https://github.com/pytorch/executorch/tree/gh/SS-JIA/250/orig
@diff-train-skip-merge

cc @SS-JIA @manuelcandales @cbilgin

SS-JIA added 2 commits June 26, 2025 08:37
…fers

Pull Request resolved: #11983

## Changes

* Move the logic skipping output nodes that are mutable buffers from runtime to AOT

## Context

A `fx.Graph` may return nodes that are mutable buffers:


```
    class GraphModule(torch.nn.Module):
        def forward(self, p_wrapped_module_wq_weight: "f32[2048, 2048]", p_wrapped_module_wk_weight: "f32[512, 2048]", p_wrapped_module_wv_weight: "f32[512, 2048]", p_wrapped_module_wo_weight: "f32[2048, 2048]", b_wrapped_module_kv_cache_k_cache: "f32[1, 2048, 8, 64]", b_wrapped_module_kv_cache_v_cache: "f32[1, 2048, 8, 64]", x: "f32[1, s27, 2048]", freqs_cos: "f32[s27, 32]", freqs_sin: "f32[s27, 32]", input_pos: "i64[1]"):
            sym_size: "Sym(s27)" = torch.ops.aten.sym_size.int(x, 1)

            ...

            # b_wrapped_module_kv_cache_*_cache are mutable buffers
            # getitem_2 and getitem_3 are derived from mutable buffers, hence they are
            # themselves mutable buffers
            auto_functionalized = torch.ops.higher_order.auto_functionalized(torch.ops.llama.update_cache.default, value = getitem_1, cache = b_wrapped_module_kv_cache_k_cache, start_pos = _local_scalar_dense_1);  getitem_1 = b_wrapped_module_kv_cache_k_cache = None
            getitem_2: "f32[1, 2048, 8, 64]" = auto_functionalized[1];  auto_functionalized = None
            auto_functionalized_1 = torch.ops.higher_order.auto_functionalized(torch.ops.llama.update_cache.default, value = aten_view_copy_default_8, cache = b_wrapped_module_kv_cache_v_cache, start_pos = _local_scalar_dense_1);  aten_view_copy_default_8 = b_wrapped_module_kv_cache_v_cache = _local_scalar_dense_1 = None
            getitem_3: "f32[1, 2048, 8, 64]" = auto_functionalized_1[1];  auto_functionalized_1 = None

            ...

            aten_permute_copy_default_3: "f32[2048, 2048]" = executorch_exir_dialects_edge__ops_aten_permute_copy_default(p_wrapped_module_wo_weight, [1, 0]);  p_wrapped_module_wo_weight = None
            aten_view_copy_default_10: "f32[s27, 2048]" = executorch_exir_dialects_edge__ops_aten_view_copy_default(aten_view_copy_default_9, [sym_size, 2048]);  aten_view_copy_default_9 = None
            aten_mm_default_3: "f32[s27, 2048]" = executorch_exir_dialects_edge__ops_aten_mm_default(aten_view_copy_default_10, aten_permute_copy_default_3);  aten_view_copy_default_10 = aten_permute_copy_default_3 = None
            aten_view_copy_default_11: "f32[1, s27, 2048]" = executorch_exir_dialects_edge__ops_aten_view_copy_default(aten_mm_default_3, [1, sym_size, 2048]);  aten_mm_default_3 = sym_size = None

            # getitem_2 and getitem_3 are returned as outputs, presumably to prevent the
            # update_cache calls from being removed due to dead code elimination
            return (getitem_2, getitem_3, aten_view_copy_default_11, None)
```

In the graph signature of the `ExportedProgram` these show up as `BUFFER_MUTATION` outputs

```
Graph signature:
    # inputs
    p_wrapped_module_wq_weight: PARAMETER target='wrapped_module.wq.weight'
    p_wrapped_module_wk_weight: PARAMETER target='wrapped_module.wk.weight'
    p_wrapped_module_wv_weight: PARAMETER target='wrapped_module.wv.weight'
    p_wrapped_module_wo_weight: PARAMETER target='wrapped_module.wo.weight'
    b_wrapped_module_kv_cache_k_cache: BUFFER target='wrapped_module.kv_cache.k_cache' persistent=True
    b_wrapped_module_kv_cache_v_cache: BUFFER target='wrapped_module.kv_cache.v_cache' persistent=True
    x: USER_INPUT
    freqs_cos: USER_INPUT
    freqs_sin: USER_INPUT
    input_pos: USER_INPUT

    # outputs
    getitem_2: BUFFER_MUTATION target='wrapped_module.kv_cache.k_cache'
    getitem_3: BUFFER_MUTATION target='wrapped_module.kv_cache.v_cache'
    aten_view_copy_default_11: USER_OUTPUT
    : USER_OUTPUT
```

Although these nodes are technically returned by the `fx.Graph`, `BUFFER_MUTATION` outputs are not included in the delegate call schema. Since the Vulkan delegate serialization uses the output node to mark which values are returned as outputs, this could result in a mismatch betwen the outputs of the Vulkan delegate and the outputs expected by the ExecuTorch runtime.

## Motivation

Previously, this mismatch was addressed in the runtime, by skipping the processing of non-tensor outputs. However, this solution does not account for the fact that in some models, paramters of the model may be returned as outputs. In this case, those parameter outputs would be skipped but the ExecuTorch runtime would still expect to receive them as outputs.

To solve the problem properly, this diff changes the serialization logic to check if an output node is a mutable buffer, and skip marking it as an output if so. In the runtime, all output nodes are processed instead of only processing tensor outputs.
ghstack-source-id: 292864908
@exported-using-ghexport

Differential Revision: [D77281491](https://our.internmc.facebook.com/intern/diff/D77281491/)
Pull Request resolved: #11984

## Changes

As title.

## Motivation

Some models may have parameter tensors which are zero-shape (i.e. no elements). In this case, trying to serialize the tensor data will result in a null pointer exception.
ghstack-source-id: 292864904

Differential Revision: [D77281492](https://our.internmc.facebook.com/intern/diff/D77281492/)
@pytorchbot pytorchbot requested a review from SS-JIA as a code owner June 26, 2025 20:07
@pytorch-bot pytorch-bot bot added the module: vulkan Issues related to the Vulkan delegate and code under backends/vulkan/ label Jun 26, 2025
@pytorch-bot
Copy link

pytorch-bot bot commented Jun 26, 2025

🔗 Helpful Links

🧪 See artifacts and rendered test results at hud.pytorch.org/pr/pytorch/executorch/12021

Note: Links to docs will display an error until the docs builds have been completed.

❗ 1 Active SEVs

There are 1 currently active SEVs. If your PR is affected, please view them below:

❌ 1 New Failure

As of commit e5e3467 with merge base ecb85ce (image):

NEW FAILURE - The following job has failed:

This comment was automatically generated by Dr. CI and updates every 15 minutes.

@facebook-github-bot facebook-github-bot added the CLA Signed This label is managed by the Facebook bot. Authors need to sign the CLA before a PR can be reviewed. label Jun 26, 2025
Base automatically changed from gh/SS-JIA/249/orig to main June 27, 2025 17:31
@GregoryComer GregoryComer merged commit 81d176c into main Jun 27, 2025
94 of 95 checks passed
@GregoryComer GregoryComer deleted the gh/SS-JIA/250/orig branch June 27, 2025 20:56
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

CLA Signed This label is managed by the Facebook bot. Authors need to sign the CLA before a PR can be reviewed. module: vulkan Issues related to the Vulkan delegate and code under backends/vulkan/

Projects

None yet

Development

Successfully merging this pull request may close these issues.

5 participants