Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions examples/models/llama/TARGETS
Original file line number Diff line number Diff line change
Expand Up @@ -13,6 +13,7 @@ runtime.python_library(
name = "llama_transformer",
srcs = [
"llama_transformer.py",
"lora.py",
"rope.py",
"attention.py",
"model_args.py",
Expand Down
74 changes: 66 additions & 8 deletions examples/models/llama/attention.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,7 @@
import torch
import torch.nn as nn
import torch.nn.functional as F
from executorch.examples.models.llama.lora import LoRALinear
from executorch.examples.models.llama.model_args import ModelArgs
from executorch.examples.models.llama.norm import RMSNorm
from executorch.examples.models.llama.rope import Rope
Expand Down Expand Up @@ -325,7 +326,20 @@ def update(

@register_attention("mha")
class AttentionMHA(Attention):
def __init__(self, args: ModelArgs, layer_id: int, rope: Rope):
def __init__(
self,
args: ModelArgs,
layer_id: int,
rope: Rope,
):
"""
Multi-head attention layer.

Args:
args (ModelArgs): Model configuration parameters.
layer_id (int): Layer index.
rope (Rope): Rotary position embedding module.
"""
super().__init__()
self.use_kv_cache = args.use_kv_cache
self.n_heads = args.n_heads
Expand All @@ -350,16 +364,60 @@ def __init__(self, args: ModelArgs, layer_id: int, rope: Rope):
self.q_norm_fn = RMSNorm(q_norm_dim, eps=args.norm_eps)
self.k_norm_fn = RMSNorm(k_norm_dim, eps=args.norm_eps)

self.wq = nn.Linear(
self.dim, self.n_heads * self.head_dim, bias=self.attention_qkv_bias
self.wq = (
LoRALinear(
in_dim=args.dim,
out_dim=args.n_heads * args.head_dim,
rank=args.r,
alpha=args.lora_alpha,
dropout=0.0,
use_bias=args.attention_qkv_bias,
)
if args.target_modules is not None and "q_proj" in args.target_modules
else nn.Linear(
self.dim, self.n_heads * self.head_dim, bias=self.attention_qkv_bias
)
)
self.wk = nn.Linear(
self.dim, self.n_kv_heads * self.head_dim, bias=self.attention_qkv_bias
self.wk = (
LoRALinear(
in_dim=args.dim,
out_dim=args.n_kv_heads * args.head_dim,
rank=args.r,
alpha=args.lora_alpha,
dropout=0.0,
use_bias=args.attention_qkv_bias,
)
if args.target_modules is not None and "k_proj" in args.target_modules
else nn.Linear(
self.dim, self.n_kv_heads * self.head_dim, bias=self.attention_qkv_bias
)
)
self.wv = nn.Linear(
self.dim, self.n_kv_heads * self.head_dim, bias=self.attention_qkv_bias
self.wv = (
LoRALinear(
in_dim=args.dim,
out_dim=args.n_kv_heads * args.head_dim,
rank=args.r,
alpha=args.lora_alpha,
dropout=0.0,
use_bias=args.attention_qkv_bias,
)
if args.target_modules is not None and "v_proj" in args.target_modules
else nn.Linear(
self.dim, self.n_kv_heads * self.head_dim, bias=self.attention_qkv_bias
)
)
self.wo = (
LoRALinear(
in_dim=args.n_kv_heads * args.head_dim,
out_dim=args.dim,
rank=args.r,
alpha=args.lora_alpha,
dropout=0.0,
use_bias=args.attention_qkv_bias,
)
if args.target_modules is not None and "output_proj" in args.target_modules
else nn.Linear(self.n_heads * self.head_dim, self.dim, bias=False)
)
self.wo = nn.Linear(self.n_heads * self.head_dim, self.dim, bias=False)

self.layer_id = layer_id

Expand Down
48 changes: 48 additions & 0 deletions examples/models/llama/lora.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,48 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.

import torch
from torch import nn


class LoRALinear(nn.Module):
"""LoRA linear layer as introduced in `LoRA: Low-Rank Adaptation of Large Language Models <https://arxiv.org/abs/2106.09685>`."""

def __init__(
self,
in_dim: int,
out_dim: int,
rank: int,
alpha: float,
dropout: float = 0.0,
use_bias: bool = False,
):
super().__init__()
self.in_dim = in_dim
self.out_dim = out_dim
self.rank = rank
self.alpha = alpha
self.use_bias = use_bias
self.dropout = dropout

linear = nn.Linear(in_dim, out_dim, bias=use_bias)
weight = linear.weight
bias = linear.bias if self.use_bias else None
self.register_parameter("weight", nn.Parameter(weight))
self.register_parameter(
"bias", nn.Parameter(bias) if bias is not None else None
)

self.dropout = nn.Dropout(p=dropout) if dropout > 0.0 else nn.Identity()
self.lora_a = nn.Linear(in_features=in_dim, out_features=rank, bias=False)
self.lora_b = nn.Linear(in_features=rank, out_features=out_dim, bias=False)

def forward(self, x: torch.Tensor) -> torch.Tensor:
out = torch.nn.functional.linear(x, self.weight, self.bias)
lora_out = self.lora_a(self.dropout(x))
lora_out = (self.alpha / self.rank) * self.lora_b(lora_out)

return out + lora_out
10 changes: 10 additions & 0 deletions examples/models/llama/model_args.py
Original file line number Diff line number Diff line change
Expand Up @@ -55,8 +55,18 @@ class ModelArgs:
eos_count: int = 2

quantization_args: Optional[dict] = None
# LoRA for QAT.
lora_args: Optional[dict] = None

# LoRA arguments to set up a LoRA inference model.
# These arguments come directly from a torchtune LoRA config.
r: Optional[int] = None # Rank.
lora_alpha: Optional[int] = None # Alpha.
# Eg. q_proj, k_proj, v_proj, output_proj
target_modules: Optional[list] = None
peft_type: Optional[str] = None # PEFT type.
base_model_name_or_path: Optional[str] = None # Base model name or path.

def __post_init__(self):
if self.n_kv_heads is None:
self.n_kv_heads = self.n_heads
Expand Down
Loading