Skip to content
Draft
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
49 changes: 49 additions & 0 deletions backends/arm/test/models/test_nn_modules.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,12 +20,37 @@
import torch
from executorch.backends.arm.test.common import parametrize
from executorch.backends.arm.test.tester.test_pipeline import (
EthosU55PipelineBI,
TosaPipelineBI,
TosaPipelineMI,
)

example_input = torch.rand(1, 6, 16, 16)


class SimpleWeightReuseModel(torch.nn.Module):
def __init__(self):
super().__init__()
self.conv1 = torch.nn.Conv2d(1, 16, kernel_size=3, padding=1)
self.relu = torch.nn.ReLU()
self.conv2 = torch.nn.Conv2d(16, 1, kernel_size=3, padding=1)
self.layer_scale = torch.nn.Parameter(torch.ones(1, 1, 1) * 1e-2)

def _apply_inner(self, input_tensor: torch.Tensor) -> torch.Tensor:
out = self.conv1(input_tensor)
out = self.relu(out)
out = self.conv2(out)
out = self.layer_scale * out
return out

def forward(
self, a: torch.Tensor, b: torch.Tensor
) -> tuple[torch.Tensor, torch.Tensor]:
x = self._apply_inner(a)
y = self._apply_inner(x + b)
return (x, y)


module_tests = [
(torch.nn.Embedding(10, 10), (torch.LongTensor([[1, 2, 4, 5], [4, 3, 2, 9]]),)),
(torch.nn.LeakyReLU(), (example_input,)),
Expand All @@ -46,6 +71,8 @@
),
(torch.rand((10, 32, 64)), torch.rand((20, 32, 64))),
),
# Temporary!
(SimpleWeightReuseModel(), (torch.rand(1, 1, 20, 48), torch.rand(1, 1, 20, 48))),
]

input_t = tuple[torch.Tensor]
Expand Down Expand Up @@ -100,3 +127,25 @@ def test_nn_Modules_BI(test_data):
not in str(e)
):
raise e


@parametrize(
"test_data",
{"SimpleWeightReuseModel": test_parameters["SimpleWeightReuseModel"]},
xfails={
"SimpleWeightReuseModel": "RuntimeError: Non-passthrough operation could not run on NPU.",
},
)
def test_nn_Modules_U55BI(test_data):
module, inputs = test_data
pipeline = EthosU55PipelineBI[input_t](
module, inputs, "", use_to_edge_transform_and_lower=True
)
pipeline.pop_stage("check.aten")
pipeline.pop_stage("check_count.exir")
pipeline.pop_stage("check.quant_nodes")
pipeline.pop_stage("check_not.quant_nodes")
try:
pipeline.run()
except RuntimeError as e:
raise e
Loading