Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions backends/arm/_passes/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -37,6 +37,7 @@
from .decompose_cosine_similarity_pass import DecomposeCosineSimilarityPass # noqa
from .decompose_cumsum_pass import DecomposeCumsumPass # noqa
from .decompose_div_pass import DecomposeDivPass # noqa
from .decompose_div_tensor_mode import DecomposeDivTensorModePass # noqa
from .decompose_elu_pass import DecomposeEluPass # noqa
from .decompose_embedding_pass import DecomposeEmbeddingPass # noqa # noqa
from .decompose_expm1_pass import DecomposeExpm1Pass # noqa
Expand Down
3 changes: 3 additions & 0 deletions backends/arm/_passes/arm_pass_manager.py
Original file line number Diff line number Diff line change
Expand Up @@ -42,6 +42,7 @@
DecomposeCosineSimilarityPass,
DecomposeCumsumPass,
DecomposeDivPass,
DecomposeDivTensorModePass,
DecomposeEluPass,
DecomposeEmbeddingPass,
DecomposeExpm1Pass,
Expand Down Expand Up @@ -211,6 +212,7 @@ def _tosa_FP_pipeline(self, exported_program: ExportedProgram) -> GraphModule:
DecomposeMeanDimPass(exported_program.graph_module, self.tosa_spec)
)
self.add_pass(DecomposeNotEqualPass())
self.add_pass(DecomposeDivTensorModePass())
self.add_pass(DecomposeDivPass())
self.add_pass(DecomposeSoftmaxPass())
self.add_pass(DecomposeGeluPass())
Expand Down Expand Up @@ -289,6 +291,7 @@ def transform_for_annotation_pipeline(self, graph_module: GraphModule):
self.add_pass(DecomposeNotEqualPass())
self.add_pass(DecomposeCosineSimilarityPass())
self.add_pass(DecomposeGluPass())
self.add_pass(DecomposeDivTensorModePass())
self.add_pass(DecomposeDivPass())
self.add_pass(DecomposeLeakyReLUPass())
self.add_pass(DecomposeLinearVectorNormPass())
Expand Down
84 changes: 84 additions & 0 deletions backends/arm/_passes/decompose_div_tensor_mode.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,84 @@
# Copyright 2025 Arm Limited and/or its affiliates.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.

# pyre-unsafe

import torch
from executorch.exir.dialects._ops import ops as exir_ops
from executorch.exir.pass_base import ExportPass

edge_div_mode_ops = (exir_ops.edge.aten.div.Tensor_mode,)
aten_div_mode_ops = (torch.ops.aten.div.Tensor_mode,)

edge_unary = {
"div": exir_ops.edge.aten.div.Tensor,
"floor": exir_ops.edge.aten.floor.default,
"ceil": exir_ops.edge.aten.ceil.default,
"full": exir_ops.edge.aten.full.default,
"lt": exir_ops.edge.aten.lt.Tensor,
"where": exir_ops.edge.aten.where.self,
}

aten_unary = {
"div": torch.ops.aten.div.Tensor,
"floor": torch.ops.aten.floor.default,
"ceil": torch.ops.aten.ceil.default,
"full": torch.ops.aten.full.default,
"lt": torch.ops.aten.lt.Tensor,
"where": torch.ops.aten.where.self,
}


def _get_opset(op):
if op in edge_div_mode_ops:
return edge_unary
if op in aten_div_mode_ops:
return aten_unary
raise RuntimeError(f"div.Tensor_mode not supported for op {op}")


class DecomposeDivTensorModePass(ExportPass):
"""
Rewrites aten.div.Tensor_mode into

rounding_mode=None -> div(a, b)
rounding_mode='floor' -> floor(div(a, b))
rounding_mode='trunc' -> where(div(a,b) < 0, ceil(div(a,b)), floor(div(a,b)))
"""

def call_operator(self, op, args, kwargs, meta):
if op not in (edge_div_mode_ops + aten_div_mode_ops):
return super().call_operator(op, args, kwargs, meta)

opset = _get_opset(op)

a, b = args[0], args[1]
rounding_mode = kwargs.get("rounding_mode", None)
if rounding_mode is None and len(args) > 2:
rounding_mode = args[2]

q = super().call_operator(opset["div"], (a, b), {}, meta)

if rounding_mode is None:
return q

if rounding_mode == "floor":
return super().call_operator(opset["floor"], (q,), {}, meta)

if rounding_mode == "trunc":
zero = super().call_operator(
opset["full"],
args=((1,) * len(meta["val"].size()), 0.0),
kwargs={"dtype": torch.float32},
meta=meta,
)
lt0 = self.call_operator(opset["lt"], (q, zero), {}, meta)
ceilq = self.call_operator(opset["ceil"], (q,), {}, meta)
floorq = self.call_operator(opset["floor"], (q,), {}, meta)
return self.call_operator(opset["where"], (lt0, ceilq, floorq), {}, meta)

raise RuntimeError(
f"Unsupported rounding_mode for div.Tensor_mode: {rounding_mode!r}"
)
Original file line number Diff line number Diff line change
Expand Up @@ -176,6 +176,7 @@ def is_node_supported(
exir_ops.edge.aten.hardtanh.default,
exir_ops.edge.aten.hardswish.default,
exir_ops.edge.aten.div.Tensor,
exir_ops.edge.aten.div.Tensor_mode,
exir_ops.edge.aten.eq.Tensor,
exir_ops.edge.aten.eq.Scalar,
exir_ops.edge.aten.erf.default,
Expand Down
151 changes: 151 additions & 0 deletions backends/arm/test/ops/test_div_tensor_mode.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,151 @@
# Copyright 2025 Arm Limited and/or its affiliates.
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.

from typing import Tuple

import pytest
import torch

from executorch.backends.arm.test import common
from executorch.backends.arm.test.tester.test_pipeline import (
EthosU55PipelineINT,
EthosU85PipelineINT,
TosaPipelineFP,
TosaPipelineINT,
VgfPipeline,
)

input_tt = Tuple[torch.Tensor, torch.Tensor]


def make_float_div_inputs(B: int = 4, T: int = 64) -> input_tt:
x = torch.randn(B, T)
# guard against zero in denominator
y = torch.randn(B, T).abs() + 1e-3
return x, y


class DivTensorModeFloat(torch.nn.Module):
"""
torch.div(x, y, rounding_mode=mode) with
mode from {None, "floor", "trunc"}.
"""

aten_ops = ["aten.div.Tensor_mode"]
aten_ops_int = ["aten.mul.Tensor", "aten.reciprocal.default"]

def __init__(self, mode=None):
super().__init__()
assert mode in (None, "floor", "trunc")
self.mode = mode

def forward(self, x: torch.Tensor, y: torch.Tensor) -> torch.Tensor:
return torch.div(x, y, rounding_mode=self.mode)


@pytest.mark.parametrize("mode", [None, "floor", "trunc"])
def test_div_tensor_mode_tosa_FP(mode):

model = DivTensorModeFloat(mode)
inputs = make_float_div_inputs()

pipeline = TosaPipelineFP[input_tt](
model,
inputs,
aten_op=model.aten_ops,
exir_op=[],
use_to_edge_transform_and_lower=True,
)
pipeline.pop_stage("check_count.exir")
pipeline.run()


@pytest.mark.parametrize("mode", [None, "floor", "trunc"])
def test_div_tensor_mode_tosa_INT(mode):

model = DivTensorModeFloat(mode)
inputs = make_float_div_inputs()

pipeline = TosaPipelineINT[input_tt](
model,
inputs,
aten_op=model.aten_ops_int,
exir_op=[],
use_to_edge_transform_and_lower=True,
)
pipeline.pop_stage("check_count.exir")
pipeline.run()


@common.XfailIfNoCorstone300
@pytest.mark.parametrize("mode", [None, "floor"])
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Maybe add @common.XfailIfNoCorstone300

Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

oh, yes, missed yhis

def test_div_tensor_mode_u55_INT(mode):

model = DivTensorModeFloat(mode)
inputs = make_float_div_inputs()

pipeline = EthosU55PipelineINT[input_tt](
model,
inputs,
aten_ops=model.aten_ops_int,
exir_ops=[],
use_to_edge_transform_and_lower=True,
run_on_fvp=True,
)
pipeline.run()


@common.XfailIfNoCorstone320
@pytest.mark.parametrize("mode", [None, "floor", "trunc"])
def test_div_tensor_mode_u85_INT(mode):

model = DivTensorModeFloat(mode)
inputs = make_float_div_inputs()

pipeline = EthosU85PipelineINT[input_tt](
model,
inputs,
aten_ops=model.aten_ops_int,
exir_ops=[],
use_to_edge_transform_and_lower=True,
run_on_fvp=True,
)
pipeline.run()


@common.SkipIfNoModelConverter
@pytest.mark.parametrize("mode", [None, "floor", "trunc"])
def test_div_tensor_mode_vgf_INT(mode):

model = DivTensorModeFloat(mode)
inputs = make_float_div_inputs()

pipeline = VgfPipeline[input_tt](
model,
inputs,
aten_op=model.aten_ops_int,
exir_op=[],
tosa_version="TOSA-1.0+INT",
use_to_edge_transform_and_lower=True,
)
pipeline.pop_stage("check_count.exir")
pipeline.run()


@common.SkipIfNoModelConverter
@pytest.mark.parametrize("mode", [None, "floor", "trunc"])
def test_div_tensor_mode_vgf_FP(mode):

model = DivTensorModeFloat(mode)
inputs = make_float_div_inputs()

pipeline = VgfPipeline[input_tt](
model,
inputs,
aten_op=model.aten_ops,
exir_op=[],
tosa_version="TOSA-1.0+FP",
use_to_edge_transform_and_lower=True,
)
pipeline.run()
Loading