-
Notifications
You must be signed in to change notification settings - Fork 691
Arm backend: add DeiTTiny evaluator and deterministic shuffled calibration subsets #14579
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Merged
Changes from all commits
Commits
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,5 +1,4 @@ | ||
# Copyright 2024-2025 Arm Limited and/or its affiliates. | ||
# All rights reserved. | ||
# | ||
# This source code is licensed under the BSD-style license found in the | ||
# LICENSE file in the root directory of this source tree. | ||
|
@@ -30,7 +29,139 @@ | |
logger.setLevel(logging.INFO) | ||
|
||
|
||
# ImageNet 224x224 transforms (Resize->CenterCrop->ToTensor->Normalize) | ||
# If future models require different preprocessing, extend this helper accordingly. | ||
def _get_imagenet_224_transforms(): | ||
"""Return standard ImageNet 224x224 preprocessing transforms.""" | ||
return transforms.Compose( | ||
[ | ||
transforms.Resize(256), | ||
transforms.CenterCrop(224), | ||
transforms.ToTensor(), | ||
transforms.Normalize(mean=[0.484, 0.454, 0.403], std=[0.225, 0.220, 0.220]), | ||
] | ||
) | ||
|
||
|
||
def _build_calibration_loader( | ||
dataset: datasets.ImageFolder, max_items: int | ||
) -> DataLoader: | ||
"""Return a DataLoader over a deterministic, shuffled subset of size <= max_items. | ||
|
||
Shuffles with seed: ARM_EVAL_CALIB_SEED (int) or default 1337; then selects first k and | ||
sorts indices to keep enumeration order stable while content depends on seed. | ||
""" | ||
k = min(max_items, len(dataset)) | ||
seed_env = os.getenv("ARM_EVAL_CALIB_SEED") | ||
default_seed = 1337 | ||
if seed_env is not None: | ||
try: | ||
seed = int(seed_env) | ||
except ValueError: | ||
logger.warning( | ||
"ARM_EVAL_CALIB_SEED is not an int (%s); using default seed %d", | ||
seed_env, | ||
default_seed, | ||
) | ||
seed = default_seed | ||
else: | ||
seed = default_seed | ||
rng = random.Random(seed) | ||
indices = list(range(len(dataset))) | ||
rng.shuffle(indices) | ||
selected = sorted(indices[:k]) | ||
return torch.utils.data.DataLoader( | ||
torch.utils.data.Subset(dataset, selected), batch_size=1, shuffle=False | ||
) | ||
|
||
|
||
def _load_imagenet_folder(directory: str) -> datasets.ImageFolder: | ||
"""Shared helper to load an ImageNet-layout folder. | ||
|
||
Raises FileNotFoundError for a missing directory early to aid debugging. | ||
""" | ||
directory_path = Path(directory) | ||
if not directory_path.exists(): | ||
raise FileNotFoundError(f"Directory: {directory} does not exist.") | ||
transform = _get_imagenet_224_transforms() | ||
return datasets.ImageFolder(directory_path, transform=transform) | ||
|
||
|
||
class GenericModelEvaluator: | ||
"""Base evaluator computing quantization error metrics and optional compression ratio. | ||
|
||
Subclasses can extend: provide calibration (get_calibrator) and override evaluate() | ||
to add domain specific metrics (e.g. top-1 / top-5 accuracy). | ||
""" | ||
|
||
@staticmethod | ||
def evaluate_topk( | ||
model: Module, | ||
dataset: datasets.ImageFolder, | ||
batch_size: int, | ||
topk: int = 5, | ||
log_every: int = 50, | ||
) -> Tuple[float, float]: | ||
"""Evaluate model top-1 / top-k accuracy. | ||
|
||
Args: | ||
model: Torch module (should be in eval() mode prior to call). | ||
dataset: ImageFolder style dataset. | ||
batch_size: Batch size for evaluation. | ||
topk: Maximum k for accuracy (default 5). | ||
log_every: Log running accuracy every N batches. | ||
Returns: | ||
(top1_accuracy, topk_accuracy) | ||
""" | ||
# Some exported / quantized models (torchao PT2E) disallow direct eval()/train(). | ||
# Try to switch to eval mode, but degrade gracefully if unsupported. | ||
try: | ||
model.eval() | ||
except NotImplementedError: | ||
# Attempt to enable train/eval overrides if torchao helper is present. | ||
try: | ||
from torchao.quantization.pt2e.utils import ( # type: ignore | ||
allow_exported_model_train_eval, | ||
) | ||
|
||
allow_exported_model_train_eval(model) | ||
try: | ||
model.eval() | ||
except Exception: | ||
logger.debug( | ||
"Model eval still not supported after allow_exported_model_train_eval; proceeding without explicit eval()." | ||
) | ||
except Exception: | ||
logger.debug( | ||
"Model eval() unsupported and torchao allow_exported_model_train_eval not available; proceeding." | ||
) | ||
loaded_dataset = DataLoader(dataset, batch_size=batch_size, shuffle=False) | ||
top1_correct = 0 | ||
topk_correct = 0 | ||
total = 0 | ||
with torch.inference_mode(): # disable autograd + some backend optimizations | ||
for i, (image, target) in enumerate(loaded_dataset): | ||
prediction = model(image) | ||
topk_indices = torch.topk(prediction, k=topk, dim=1).indices | ||
# target reshaped for broadcasting | ||
target_view = target.view(-1, 1) | ||
top1_correct += (topk_indices[:, :1] == target_view).sum().item() | ||
topk_correct += (topk_indices == target_view).sum().item() | ||
batch_sz = image.size(0) | ||
total += batch_sz | ||
if (i + 1) % log_every == 0 or total == len(dataset): | ||
logger.info( | ||
"Eval progress: %d / %d top1=%.4f top%d=%.4f", | ||
total, | ||
len(dataset), | ||
top1_correct / total, | ||
topk, | ||
topk_correct / total, | ||
) | ||
top1_accuracy = top1_correct / len(dataset) | ||
topk_accuracy = topk_correct / len(dataset) | ||
return top1_accuracy, topk_accuracy | ||
|
||
REQUIRES_CONFIG = False | ||
|
||
def __init__( | ||
|
@@ -53,12 +184,13 @@ def __init__( | |
self.tosa_output_path = "" | ||
|
||
def get_model_error(self) -> defaultdict: | ||
""" | ||
Returns a dict containing the following metrics between the outputs of the FP32 and INT8 model: | ||
- Maximum error | ||
- Maximum absolute error | ||
- Maximum percentage error | ||
- Mean absolute error | ||
"""Return per-output quantization error statistics. | ||
|
||
Metrics (lists per output tensor): | ||
max_error | ||
max_absolute_error | ||
max_percentage_error (safe-divided; zero fp32 elements -> 0%) | ||
mean_absolute_error | ||
""" | ||
fp32_outputs, _ = tree_flatten(self.fp32_model(*self.example_input)) | ||
int8_outputs, _ = tree_flatten(self.int8_model(*self.example_input)) | ||
|
@@ -67,7 +199,12 @@ def get_model_error(self) -> defaultdict: | |
|
||
for fp32_output, int8_output in zip(fp32_outputs, int8_outputs): | ||
difference = fp32_output - int8_output | ||
percentage_error = torch.div(difference, fp32_output) * 100 | ||
# Avoid divide by zero: elements where fp32 == 0 produce 0% contribution | ||
percentage_error = torch.where( | ||
fp32_output != 0, | ||
difference / fp32_output * 100, | ||
torch.zeros_like(difference), | ||
) | ||
model_error_dict["max_error"].append(torch.max(difference).item()) | ||
model_error_dict["max_absolute_error"].append( | ||
torch.max(torch.abs(difference)).item() | ||
|
@@ -132,77 +269,116 @@ def __init__( | |
|
||
@staticmethod | ||
def __load_dataset(directory: str) -> datasets.ImageFolder: | ||
directory_path = Path(directory) | ||
if not directory_path.exists(): | ||
raise FileNotFoundError(f"Directory: {directory} does not exist.") | ||
|
||
transform = transforms.Compose( | ||
[ | ||
transforms.Resize(256), | ||
transforms.CenterCrop(224), | ||
transforms.ToTensor(), | ||
transforms.Normalize( | ||
mean=[0.484, 0.454, 0.403], std=[0.225, 0.220, 0.220] | ||
), | ||
] | ||
) | ||
return datasets.ImageFolder(directory_path, transform=transform) | ||
return _load_imagenet_folder(directory) | ||
|
||
@staticmethod | ||
def get_calibrator(training_dataset_path: str) -> DataLoader: | ||
dataset = MobileNetV2Evaluator.__load_dataset(training_dataset_path) | ||
rand_indices = random.sample(range(len(dataset)), k=1000) | ||
return _build_calibration_loader(dataset, 1000) | ||
|
||
# Return a subset of the dataset to be used for calibration | ||
return torch.utils.data.DataLoader( | ||
torch.utils.data.Subset(dataset, rand_indices), | ||
batch_size=1, | ||
shuffle=False, | ||
@classmethod | ||
def from_config( | ||
cls, | ||
model_name: str, | ||
fp32_model: Module, | ||
int8_model: Module, | ||
example_input: Tuple[torch.Tensor], | ||
tosa_output_path: str | None, | ||
config: dict[str, Any], | ||
) -> "MobileNetV2Evaluator": | ||
"""Factory constructing evaluator from a config dict. | ||
|
||
Expected keys: batch_size, validation_dataset_path | ||
""" | ||
return cls( | ||
model_name, | ||
fp32_model, | ||
int8_model, | ||
example_input, | ||
tosa_output_path, | ||
batch_size=config["batch_size"], | ||
validation_dataset_path=config["validation_dataset_path"], | ||
) | ||
|
||
def __evaluate_mobilenet(self) -> Tuple[float, float]: | ||
def evaluate(self) -> dict[str, Any]: | ||
# Load dataset and compute top-1 / top-5 | ||
dataset = MobileNetV2Evaluator.__load_dataset(self.__validation_set_path) | ||
loaded_dataset = DataLoader( | ||
dataset, | ||
batch_size=self.__batch_size, | ||
shuffle=False, | ||
top1_correct, top5_correct = GenericModelEvaluator.evaluate_topk( | ||
self.int8_model, dataset, self.__batch_size, topk=5 | ||
) | ||
output = super().evaluate() | ||
|
||
top1_correct = 0 | ||
top5_correct = 0 | ||
output["metrics"]["accuracy"] = {"top-1": top1_correct, "top-5": top5_correct} | ||
return output | ||
|
||
for i, (image, target) in enumerate(loaded_dataset): | ||
prediction = self.int8_model(image) | ||
top1_prediction = torch.topk(prediction, k=1, dim=1).indices | ||
top5_prediction = torch.topk(prediction, k=5, dim=1).indices | ||
|
||
top1_correct += (top1_prediction == target.view(-1, 1)).sum().item() | ||
top5_correct += (top5_prediction == target.view(-1, 1)).sum().item() | ||
class DeiTTinyEvaluator(GenericModelEvaluator): | ||
REQUIRES_CONFIG = True | ||
|
||
logger.info("Iteration: {}".format((i + 1) * self.__batch_size)) | ||
logger.info( | ||
"Top 1: {}".format(top1_correct / ((i + 1) * self.__batch_size)) | ||
) | ||
logger.info( | ||
"Top 5: {}".format(top5_correct / ((i + 1) * self.__batch_size)) | ||
) | ||
def __init__( | ||
self, | ||
model_name: str, | ||
fp32_model: Module, | ||
int8_model: Module, | ||
example_input: Tuple[torch.Tensor], | ||
tosa_output_path: str | None, | ||
batch_size: int, | ||
validation_dataset_path: str, | ||
) -> None: | ||
super().__init__( | ||
model_name, fp32_model, int8_model, example_input, tosa_output_path | ||
) | ||
self.__batch_size = batch_size | ||
self.__validation_set_path = validation_dataset_path | ||
|
||
top1_accuracy = top1_correct / len(dataset) | ||
top5_accuracy = top5_correct / len(dataset) | ||
@staticmethod | ||
def __load_dataset(directory: str) -> datasets.ImageFolder: | ||
return _load_imagenet_folder(directory) | ||
|
||
return top1_accuracy, top5_accuracy | ||
@staticmethod | ||
def get_calibrator(training_dataset_path: str) -> DataLoader: | ||
dataset = DeiTTinyEvaluator.__load_dataset(training_dataset_path) | ||
return _build_calibration_loader(dataset, 1000) | ||
|
||
@classmethod | ||
def from_config( | ||
cls, | ||
model_name: str, | ||
fp32_model: Module, | ||
int8_model: Module, | ||
example_input: Tuple[torch.Tensor], | ||
tosa_output_path: str | None, | ||
config: dict[str, Any], | ||
) -> "DeiTTinyEvaluator": | ||
"""Factory constructing evaluator from a config dict. | ||
|
||
Expected keys: batch_size, validation_dataset_path | ||
""" | ||
return cls( | ||
model_name, | ||
fp32_model, | ||
int8_model, | ||
example_input, | ||
tosa_output_path, | ||
batch_size=config["batch_size"], | ||
validation_dataset_path=config["validation_dataset_path"], | ||
) | ||
|
||
def evaluate(self) -> dict[str, Any]: | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. would it better to refactor this and MobileNetV2Evaluator to share much of the code? There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. good suggestion, will do. |
||
top1_correct, top5_correct = self.__evaluate_mobilenet() | ||
# Load dataset and compute top-1 / top-5 | ||
dataset = DeiTTinyEvaluator.__load_dataset(self.__validation_set_path) | ||
top1, top5 = GenericModelEvaluator.evaluate_topk( | ||
self.int8_model, dataset, self.__batch_size, topk=5 | ||
) | ||
output = super().evaluate() | ||
|
||
output["metrics"]["accuracy"] = {"top-1": top1_correct, "top-5": top5_correct} | ||
output["metrics"]["accuracy"] = {"top-1": top1, "top-5": top5} | ||
return output | ||
|
||
|
||
evaluators: dict[str, type[GenericModelEvaluator]] = { | ||
"generic": GenericModelEvaluator, | ||
"mv2": MobileNetV2Evaluator, | ||
"deit_tiny": DeiTTinyEvaluator, | ||
} | ||
|
||
|
||
|
@@ -223,6 +399,10 @@ def evaluator_calibration_data( | |
return evaluator.get_calibrator( | ||
training_dataset_path=config["training_dataset_path"] | ||
) | ||
if evaluator is DeiTTinyEvaluator: | ||
return evaluator.get_calibrator( | ||
training_dataset_path=config["training_dataset_path"] | ||
) | ||
else: | ||
raise RuntimeError(f"Unknown evaluator: {evaluator_name}") | ||
|
||
|
@@ -238,30 +418,30 @@ def evaluate_model( | |
) -> None: | ||
evaluator = evaluators[evaluator_name] | ||
|
||
# Get the path of the TOSA flatbuffer that is dumped | ||
intermediates_path = Path(intermediates) | ||
tosa_paths = list(intermediates_path.glob("*.tosa")) | ||
|
||
if evaluator.REQUIRES_CONFIG: | ||
assert evaluator_config is not None | ||
|
||
config_path = Path(evaluator_config) | ||
with config_path.open() as f: | ||
config = json.load(f) | ||
|
||
if evaluator == MobileNetV2Evaluator: | ||
mv2_evaluator = cast(type[MobileNetV2Evaluator], evaluator) | ||
init_evaluator: GenericModelEvaluator = mv2_evaluator( | ||
# Prefer a subclass provided from_config if available. | ||
if hasattr(evaluator, "from_config"): | ||
factory = cast(Any, evaluator.from_config) # type: ignore[attr-defined] | ||
init_evaluator = factory( | ||
model_name, | ||
model_fp32, | ||
model_int8, | ||
example_inputs, | ||
str(tosa_paths[0]), | ||
batch_size=config["batch_size"], | ||
validation_dataset_path=config["validation_dataset_path"], | ||
config, | ||
) | ||
else: | ||
raise RuntimeError(f"Unknown evaluator {evaluator_name}") | ||
raise RuntimeError( | ||
f"Evaluator {evaluator_name} requires config but does not implement from_config()" | ||
) | ||
else: | ||
init_evaluator = evaluator( | ||
model_name, model_fp32, model_int8, example_inputs, str(tosa_paths[0]) | ||
|
Oops, something went wrong.
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
unintentional delete?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
It is intentional since file is anyway modified and there is only an Arm copyright.