Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
54 changes: 54 additions & 0 deletions backends/cadence/aot/ops_registrations.py
Original file line number Diff line number Diff line change
Expand Up @@ -66,6 +66,12 @@
lib.define(
"quantized_conv.out(Tensor input, Tensor weight, Tensor bias, int[] stride, SymInt[] padding, int[] dilation, int groups, int input_zero_point, Tensor weight_zero_point, Tensor bias_scale, float out_scale, int out_zero_point, Tensor out_multiplier, Tensor out_shift, bool channel_last=False, *, Tensor(a!) out) -> Tensor(a!)"
)
lib.define(
"quantized_conv.per_tensor(Tensor input, Tensor weight, Tensor bias, int[] stride, SymInt[] padding, int[] dilation, int groups, int input_zero_point, int weight_zero_point, float bias_scale, float out_scale, int out_zero_point, int out_multiplier, int out_shift, bool channel_last=False) -> (Tensor Z)"
)
lib.define(
"quantized_conv.per_tensor_out(Tensor input, Tensor weight, Tensor bias, int[] stride, SymInt[] padding, int[] dilation, int groups, int input_zero_point, int weight_zero_point, float bias_scale, float out_scale, int out_zero_point, int out_multiplier, int out_shift, bool channel_last=False, *, Tensor(a!) out) -> Tensor(a!)"
)

lib.define(
"quantized_matmul(Tensor X, int X_zero_point, Tensor Y, int Y_zero_point, Tensor? bias, int out_multiplier, int out_shift, int out_zero_point, bool transposed=False) -> (Tensor Z)"
Expand Down Expand Up @@ -171,6 +177,54 @@ def quantized_conv_meta(
return input.new_empty(output_size, dtype=input.dtype)


@register_fake("cadence::quantized_conv.per_tensor")
def quantized_conv_per_tensor_meta(
input: torch.Tensor,
weight: torch.Tensor,
bias: torch.Tensor,
stride: Tuple[int],
padding: Tuple[int],
dilation: Tuple[int],
groups: int,
in_zero_point: int,
weight_zero_point: int,
bias_scale: float,
output_scale: float,
output_zero_point: int,
out_multiplier: int,
out_shift: int,
channel_last: bool = False,
) -> torch.Tensor:
if channel_last:
out_channels, *kernel_size, _ = weight.shape
else:
out_channels, _, *kernel_size = weight.shape

in_size = input.shape
# Assert that the input tensor has at least 3 dimensions, and at most 6
assert len(in_size) > 2
assert len(in_size) < 6

# Compute the output tensor size
output_size = (
get_conv1d_output_size(
in_size,
out_channels,
stride[1],
padding[1],
dilation[1],
kernel_size[0],
channel_last,
)
if len(in_size) == 3
else get_conv2d_output_size(
in_size, out_channels, stride, padding, dilation, kernel_size, channel_last
)
)

return input.new_empty(output_size, dtype=input.dtype)


@register_fake("cadence::quantized_layer_norm")
def quantized_layer_norm_meta(
input: torch.Tensor,
Expand Down
Loading