Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
94 changes: 94 additions & 0 deletions examples/models/llama3_2_vision/runner/exported.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,94 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.

import argparse
import json
from typing import Optional

import torch

from executorch.examples.models.llama.export_llama_lib import (
build_args_parser as _build_args_parser,
)
from executorch.examples.models.llama3_2_vision.runner.generation import (
TorchTuneLlamaRunner,
)


class ExportedLlamaRunner(TorchTuneLlamaRunner):
"""
Runs a torch-exported .pt2 Llama.
"""

def __init__(self, args):
with open(args.params, "r") as f:
params = json.loads(f.read())
super().__init__(
tokenizer_path=args.tokenizer_path,
max_seq_len=args.max_seq_length,
max_batch_size=1,
use_kv_cache=args.use_kv_cache,
vocab_size=params["vocab_size"],
device="cuda" if torch.cuda.is_available() else "cpu",
)
print(f"Loading model from {args.pt2}")
self.model = torch.export.load(args.pt2).module()
print("Model loaded")

def forward(
self,
tokens: Optional[torch.LongTensor] = None,
input_pos: Optional[torch.LongTensor] = None,
mask: Optional[torch.LongTensor] = None,
) -> torch.Tensor:
if self.use_kv_cache:
return self.model(tokens, input_pos=input_pos, mask=mask)
else:
return self.model(tokens)


def build_args_parser() -> argparse.ArgumentParser:
parser = _build_args_parser()

parser.add_argument(
"--prompt",
type=str,
default="Hello",
)

parser.add_argument(
"--pt2",
type=str,
required=True,
)

parser.add_argument(
"--temperature",
type=float,
default=0,
)

return parser


def main() -> None:
parser = build_args_parser()
args = parser.parse_args()

runner = ExportedLlamaRunner(args)
result = runner.text_completion(
prompt=args.prompt,
temperature=args.temperature,
)
print(
"Response: \n{response}\n Tokens:\n {tokens}".format(
response=result["generation"], tokens=result["tokens"]
)
)


if __name__ == "__main__":
main() # pragma: no cover
Loading