Skip to content
Merged
Show file tree
Hide file tree
Changes from 13 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
209 changes: 209 additions & 0 deletions kernels/portable/cpu/util/broadcast_indexes_range.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,209 @@
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under the BSD-style license found in the
* LICENSE file in the root directory of this source tree.
*/

#pragma once

#include <algorithm>
#include <array>
#include <cstdint>
#include <iterator>
#include <tuple>

#include <executorch/runtime/core/exec_aten/exec_aten.h>
#include <executorch/runtime/core/exec_aten/util/tensor_dimension_limit.h>

namespace torch::executor {

namespace internal {
template <std::size_t kNumInputs>
class BroadcastIndexesIterator {
public:
using difference_type = ssize_t;
using value_type = std::array<ssize_t, kNumInputs + 1>;
using reference = const value_type&;
using pointer = const value_type*;
using iterator_category = std::forward_iterator_tag;

BroadcastIndexesIterator() = default;

template <typename... Args>
explicit BroadcastIndexesIterator(const Tensor& output, const Args&... args)
: output_dim_(output.dim()),
output_shape_(output.sizes()),
effective_input_broadcast_strides_{
effective_input_broadcast_stride(output, args)...} {
static_assert(
sizeof...(args) == kNumInputs && (std::is_same_v<Args, Tensor> && ...),
"BroadcastIndexesIterator constructor requires kNumInputs input tensor"
"arguments!");
}

struct make_end_t {
explicit constexpr make_end_t() = default;
};

template <typename... Args>
BroadcastIndexesIterator(make_end_t, const Tensor& t, const Args&... args)
: current_indexes_{
t.numel(),
0,
} {}

bool operator==(const BroadcastIndexesIterator& rhs) const {
return output_index() == rhs.output_index();
}

bool operator!=(const BroadcastIndexesIterator& rhs) const {
return !operator==(rhs);
}

reference operator*() const {
return current_indexes_;
}

pointer operator->() const {
return &current_indexes_;
}

BroadcastIndexesIterator& operator++() {
output_index()++;
// TODO: add optimization for particular input tensors not being
// broadcasted?
for (auto ii = output_dim_ - 1; ii >= 0; --ii) {
// You might wonder what happens if output_shape_[ii] == 0. In
// that case, output.numel() would be 0, and thus we would have
// begin() == end() and no iteration.
if ET_UNLIKELY (delinearized_output_index_[ii] == output_shape_[ii] - 1) {
const auto old_delinearized_output_index_item =
delinearized_output_index_[ii];
delinearized_output_index_[ii] = 0;
for (const auto jj : c10::irange(1, kNumInputs + 1)) {
current_indexes_[jj] -= old_delinearized_output_index_item *
effective_input_broadcast_strides_[jj - 1][ii];
}
} else {
delinearized_output_index_[ii]++;
for (const auto jj : c10::irange(1, kNumInputs + 1)) {
current_indexes_.at(jj) +=
effective_input_broadcast_strides_[jj - 1][ii];
}
break;
}
}
return *this;
}

BroadcastIndexesIterator operator++(int) {
auto it = *this;
operator++();
return it;
}

difference_type operator-(const BroadcastIndexesIterator& rhs) const {
return difference_type(output_index() - rhs.output_index());
}

private:
ssize_t output_index() const {
return current_indexes_[0];
}

ssize_t& output_index() {
return current_indexes_[0];
}

std::array<exec_aten::SizesType, executorch::runtime::kTensorDimensionLimit>
effective_input_broadcast_stride(const Tensor& output, const Tensor& t)
const {
std::array<exec_aten::SizesType, executorch::runtime::kTensorDimensionLimit>
result = {0};
ET_CHECK_MSG(
t.dim() <= output.dim(),
"input to broadcasting op should have dim at most output dim, but %d > %d!",
(int)t.dim(),
(int)output.dim());

const auto num_leading_ones = output.dim() - t.dim();
for (const auto idx : c10::irange(num_leading_ones)) {
result[idx] = 0;
}
const auto t_sizes = t.sizes();
const auto t_strides = t.strides();
for (const auto idx :
c10::irange(num_leading_ones, num_leading_ones + t.dim())) {
result[idx] = t_sizes[idx - num_leading_ones] == 1
? 0
: t_strides[idx - num_leading_ones];
}
return result;
}

// The 0th entry is the current linear index into the output,
// followed by kNumInputs input indexes.
std::array<ssize_t, kNumInputs + 1> current_indexes_ = {0};
using ShapeType = std::
array<exec_aten::SizesType, executorch::runtime::kTensorDimensionLimit>;
ShapeType delinearized_output_index_ = {0};
ssize_t output_dim_;
ArrayRef<exec_aten::SizesType> output_shape_;
// The linear index for a broadcast tensor is
// sum(delinearized_output_index_[i] * input_stride_[i] if
// padded_input_shape_[i] != 1 else 0), where padded_input_shape is
// input.sizes() with leading 1s added to make its size equal to
// output_dim. This is straightforwardly implementable with an
// adjusted stride array that contains 0s where the padded input
// shape would contain 1s.
std::array<ShapeType, kNumInputs> effective_input_broadcast_strides_ = {
{{0}}};
};
} // namespace internal

/**
* Efficient mechanism for looping over the index space for an output
* tensor and kNumInputs possibly-broadcasted input tensors. Use as follows:
*
* auto* output_data = output.mutable_data_ptr<OutputType>();
* const auto* a_data = a.mutable_data_ptr<AType>();
* const auto* b_data = b.mutable_data_ptr<BType>();
* for (const auto [output_index, a_index, b_index] :
* BroadcastIndexesRange<2>(output, a, b)) {
* // Access output_data[output_index], a_data[a_index], and b_data[b_index].
* }
*
* (where OutputType, AType, and BType are known concrete types.)
*
* Unlike looping using delinearize_index() and
* linearize_access_indexes(), BroadcastIndexesRange avoids expensive
* division and modulo operations on each iteration.
*/
template <std::size_t kNumInputs>
class BroadcastIndexesRange {
public:
using iterator = internal::BroadcastIndexesIterator<kNumInputs>;

template <typename... Args>
BroadcastIndexesRange(const Tensor& output, const Args&... args)
: tensors_{&output, (&args)...} {}

iterator begin() const {
return std::apply(
[](const auto&... args) { return iterator((*args)...); }, tensors_);
}

iterator end() const {
return std::apply(
[](const auto&... args) {
return iterator(typename iterator::make_end_t(), (*args)...);
},
tensors_);
}

private:
std::array<const Tensor*, kNumInputs + 1> tensors_;
};
} // namespace torch::executor
56 changes: 20 additions & 36 deletions kernels/portable/cpu/util/broadcast_util.h
Original file line number Diff line number Diff line change
Expand Up @@ -9,6 +9,7 @@
#pragma once

#include <c10/util/irange.h>
#include <executorch/kernels/portable/cpu/util/broadcast_indexes_range.h>
#include <executorch/runtime/core/exec_aten/exec_aten.h>
#include <executorch/runtime/core/exec_aten/util/tensor_util.h>

Expand Down Expand Up @@ -290,23 +291,18 @@ inline void apply_binary_elementwise_fn(
const CTYPE_B* const data_b = b.const_data_ptr<CTYPE_B>();
CTYPE_OUT* const data_out = out.mutable_data_ptr<CTYPE_OUT>();

for (const auto i : c10::irange(out.numel())) {
size_t a_linear_index = i;
size_t b_linear_index = i;

if (any_is_broadcasted) {
size_t out_indexes[kTensorDimensionLimit];
delinearize_index(i, out, out_indexes, kTensorDimensionLimit);

if (a_is_broadcasted) {
a_linear_index = linearize_access_indexes(out_indexes, out.dim(), a);
}
if (b_is_broadcasted) {
b_linear_index = linearize_access_indexes(out_indexes, out.dim(), b);
}
if (any_is_broadcasted) {
for (const auto [out_index, a_index, b_index] :
BroadcastIndexesRange<2>(out, a, b)) {
data_out[out_index] = compute_fun(data_a[a_index], data_b[b_index]);
}
} else {
for (const auto i : c10::irange(out.numel())) {
size_t a_linear_index = i;
size_t b_linear_index = i;

data_out[i] = compute_fun(data_a[a_linear_index], data_b[b_linear_index]);
data_out[i] = compute_fun(data_a[a_linear_index], data_b[b_linear_index]);
}
}
}

Expand Down Expand Up @@ -338,28 +334,16 @@ inline void apply_ternary_elementwise_fn(
const CTYPE_C* const data_c = c.const_data_ptr<CTYPE_C>();
CTYPE_OUT* const data_out = out.mutable_data_ptr<CTYPE_OUT>();

for (const auto i : c10::irange(out.numel())) {
size_t a_linear_index = i;
size_t b_linear_index = i;
size_t c_linear_index = i;

if (any_is_broadcasted) {
size_t out_indexes[kTensorDimensionLimit];
delinearize_index(i, out, out_indexes, kTensorDimensionLimit);

if (a_is_broadcasted) {
a_linear_index = linearize_access_indexes(out_indexes, out.dim(), a);
}
if (b_is_broadcasted) {
b_linear_index = linearize_access_indexes(out_indexes, out.dim(), b);
}
if (c_is_broadcasted) {
c_linear_index = linearize_access_indexes(out_indexes, out.dim(), c);
}
if (any_is_broadcasted) {
for (const auto [out_index, a_index, b_index, c_index] :
BroadcastIndexesRange<3>(out, a, b, c)) {
data_out[out_index] =
compute_fun(data_a[a_index], data_b[b_index], data_c[c_index]);
}
} else {
for (const auto i : c10::irange(out.numel())) {
data_out[i] = compute_fun(data_a[i], data_b[i], data_c[i]);
}

data_out[i] = compute_fun(
data_a[a_linear_index], data_b[b_linear_index], data_c[c_linear_index]);
}
}

Expand Down
81 changes: 38 additions & 43 deletions kernels/portable/cpu/util/elementwise_util.h
Original file line number Diff line number Diff line change
Expand Up @@ -9,6 +9,7 @@
#pragma once

#include <c10/util/irange.h>
#include <executorch/kernels/portable/cpu/util/broadcast_indexes_range.h>
#include <executorch/kernels/portable/cpu/util/broadcast_util.h>
#include <executorch/kernels/portable/cpu/util/dtype_util.h>
#include <executorch/runtime/kernel/kernel_runtime_context.h>
Expand Down Expand Up @@ -121,26 +122,24 @@ inline void apply_bitensor_elementwise_fn(
char* const data_out = reinterpret_cast<char*>(out.mutable_data_ptr());

auto out_numel = out.numel();
for (const auto i : c10::irange(out_numel)) {
size_t a_linear_index = i;
size_t b_linear_index = i;

if (any_is_broadcasted) {
size_t out_indexes[kTensorDimensionLimit];
delinearize_index(i, out, out_indexes, kTensorDimensionLimit);

if (a_is_broadcasted) {
a_linear_index = linearize_access_indexes(out_indexes, out.dim(), a);
}
if (b_is_broadcasted) {
b_linear_index = linearize_access_indexes(out_indexes, out.dim(), b);
}
if (any_is_broadcasted) {
for (const auto [out_index, a_index, b_index] :
BroadcastIndexesRange<2>(out, a, b)) {
auto result = compute_fun(
load_a_to_common(&data_a[a_index * a_element_size]),
load_b_to_common(&data_b[b_index * b_element_size]));
store_common_to_out(result, &data_out[out_index * out_element_size]);
}
} else {
for (const auto i : c10::irange(out_numel)) {
size_t a_linear_index = i;
size_t b_linear_index = i;

auto result = compute_fun(
load_a_to_common(&data_a[a_linear_index * a_element_size]),
load_b_to_common(&data_b[b_linear_index * b_element_size]));
store_common_to_out(result, &data_out[i * out_element_size]);
}

auto result = compute_fun(
load_a_to_common(&data_a[a_linear_index * a_element_size]),
load_b_to_common(&data_b[b_linear_index * b_element_size]));
store_common_to_out(result, &data_out[i * out_element_size]);
}
}

Expand Down Expand Up @@ -211,31 +210,27 @@ inline void apply_tritensor_elementwise_fn(
char* const data_out = reinterpret_cast<char*>(out.mutable_data_ptr());

auto out_numel = out.numel();
for (const auto i : c10::irange(out_numel)) {
size_t a_linear_index = i;
size_t b_linear_index = i;
size_t c_linear_index = i;

if (any_is_broadcasted) {
size_t out_indexes[kTensorDimensionLimit];
delinearize_index(i, out, out_indexes, kTensorDimensionLimit);

if (a_is_broadcasted) {
a_linear_index = linearize_access_indexes(out_indexes, out.dim(), a);
}
if (b_is_broadcasted) {
b_linear_index = linearize_access_indexes(out_indexes, out.dim(), b);
}
if (c_is_broadcasted) {
c_linear_index = linearize_access_indexes(out_indexes, out.dim(), c);
}
if (any_is_broadcasted) {
for (const auto [out_index, a_index, b_index, c_index] :
BroadcastIndexesRange<3>(out, a, b, c)) {
auto result = compute_fun(
load_a_to_common(&data_a[a_index * a_element_size]),
load_b_to_common(&data_b[b_index * b_element_size]),
load_c_to_common(&data_c[c_index * c_element_size]));
store_common_to_out(result, &data_out[out_index * out_element_size]);
}
} else {
for (const auto i : c10::irange(out_numel)) {
size_t a_linear_index = i;
size_t b_linear_index = i;
size_t c_linear_index = i;

auto result = compute_fun(
load_a_to_common(&data_a[a_linear_index * a_element_size]),
load_b_to_common(&data_b[b_linear_index * b_element_size]),
load_c_to_common(&data_c[c_linear_index * c_element_size]));
store_common_to_out(result, &data_out[i * out_element_size]);
}

auto result = compute_fun(
load_a_to_common(&data_a[a_linear_index * a_element_size]),
load_b_to_common(&data_b[b_linear_index * b_element_size]),
load_c_to_common(&data_c[c_linear_index * c_element_size]));
store_common_to_out(result, &data_out[i * out_element_size]);
}
}

Expand Down
Loading
Loading