@@ -3002,12 +3002,12 @@ def f(x: torch.Tensor) -> torch.Tensor:
3002
3002
3003
3003
3004
3004
def forward(self, x_1) -> torch.Tensor:
3005
- view_copy = torch.ops.aten.view_copy(x_1, [4, 2])
3005
+ view_copy_default = torch.ops.aten.view_copy.default (x_1, [4, 2])
3006
3006
_tensor_constant0 = self._tensor_constant0
3007
- add = torch.ops.aten.add(view_copy , _tensor_constant0); view_copy = _tensor_constant0 = None
3008
- view_copy_1 = torch.ops.aten.view_copy(add , [4, 2]); add = None
3009
- copy_ = torch.ops.aten.copy_(x_1, view_copy_1 ); x_1 = None
3010
- return view_copy_1
3007
+ add_tensor = torch.ops.aten.add.Tensor(view_copy_default , _tensor_constant0); view_copy_default = _tensor_constant0 = None
3008
+ view_copy_default_1 = torch.ops.aten.view_copy.default(add_tensor , [4, 2]); add_tensor = None
3009
+ copy__default = torch.ops.aten.copy_.default (x_1, view_copy_default_1 ); x_1 = None
3010
+ return view_copy_default_1
3011
3011
""" )
3012
3012
3013
3013
def test_functionalize_fx_transpose_simple (self , device ):
@@ -3021,8 +3021,8 @@ def f(x: torch.Tensor) -> torch.Tensor:
3021
3021
3022
3022
3023
3023
def forward(self, x_1) -> torch.Tensor:
3024
- transpose_copy = torch.ops.aten.transpose_copy(x_1, 1, 0); x_1 = None
3025
- return transpose_copy
3024
+ transpose_copy_int = torch.ops.aten.transpose_copy.int (x_1, 1, 0); x_1 = None
3025
+ return transpose_copy_int
3026
3026
""" )
3027
3027
3028
3028
def test_functionalize_fx_out_op (self , device ):
@@ -3041,12 +3041,12 @@ def f(inpt: torch.Tensor) -> torch.Tensor:
3041
3041
3042
3042
3043
3043
def forward(self, inpt_1) -> torch.Tensor:
3044
- add = torch.ops.aten.add(inpt_1, inpt_1); inpt_1 = None
3045
- view_copy = torch.ops.aten.view_copy(add , [4])
3046
- view_copy_1 = torch.ops.aten.view_copy(add , [4]); add = None
3047
- add_1 = torch.ops.aten.add(view_copy_1 , 1); view_copy_1 = None
3048
- view_copy_2 = torch.ops.aten.view_copy(add_1 , [4]); add_1 = None
3049
- return view_copy_2
3044
+ add_tensor = torch.ops.aten.add.Tensor (inpt_1, inpt_1); inpt_1 = None
3045
+ view_copy_default = torch.ops.aten.view_copy.default(add_tensor , [4])
3046
+ view_copy_default_1 = torch.ops.aten.view_copy.default(add_tensor , [4]); add_tensor = None
3047
+ add_tensor_1 = torch.ops.aten.add.Tensor(view_copy_default_1 , 1); view_copy_default_1 = None
3048
+ view_copy_default_2 = torch.ops.aten.view_copy.default(add_tensor_1 , [4]); add_tensor_1 = None
3049
+ return view_copy_default_2
3050
3050
""" )
3051
3051
3052
3052
def test_functionalize_fx_multi_out_op (self , device ):
@@ -3066,12 +3066,12 @@ def f(inpt: torch.Tensor) -> torch.Tensor:
3066
3066
3067
3067
3068
3068
def forward(self, inpt_1) -> torch.Tensor:
3069
- view_copy = torch.ops.aten.view_copy(inpt_1, [2, 4]); inpt_1 = None
3070
- aminmax = torch.ops.aten.aminmax(view_copy , dim = 0); view_copy = None
3071
- getitem = aminmax [0]
3072
- getitem_1 = aminmax [1]; aminmax = None
3073
- view_copy_1 = torch.ops.aten.view_copy(getitem_1, [2, 2]); getitem_1 = None
3074
- return (view_copy_1 , getitem)
3069
+ view_copy_default = torch.ops.aten.view_copy.default (inpt_1, [2, 4]); inpt_1 = None
3070
+ aminmax_default = torch.ops.aten.aminmax.default(view_copy_default , dim = 0); view_copy_default = None
3071
+ getitem = aminmax_default [0]
3072
+ getitem_1 = aminmax_default [1]; aminmax_default = None
3073
+ view_copy_default_1 = torch.ops.aten.view_copy.default (getitem_1, [2, 2]); getitem_1 = None
3074
+ return (view_copy_default_1 , getitem)
3075
3075
""" )
3076
3076
3077
3077
def test_functionalize_fx_reapply_views_simple (self , device ):
@@ -3088,12 +3088,12 @@ def f(x: torch.Tensor) -> torch.Tensor:
3088
3088
3089
3089
3090
3090
def forward(self, x_1) -> torch.Tensor:
3091
- view = torch.ops.aten.view(x_1, [4, 2])
3091
+ view_default = torch.ops.aten.view.default (x_1, [4, 2])
3092
3092
_tensor_constant0 = self._tensor_constant0
3093
- add = torch.ops.aten.add(view , _tensor_constant0); view = _tensor_constant0 = None
3094
- view_1 = torch.ops.aten.view(add , [4, 2]); add = None
3095
- copy_ = torch.ops.aten.copy_(x_1, view_1 ); x_1 = None
3096
- return view_1
3093
+ add_tensor = torch.ops.aten.add.Tensor(view_default , _tensor_constant0); view_default = _tensor_constant0 = None
3094
+ view_default_1 = torch.ops.aten.view.default(add_tensor , [4, 2]); add_tensor = None
3095
+ copy__default = torch.ops.aten.copy_.default (x_1, view_default_1 ); x_1 = None
3096
+ return view_default_1
3097
3097
""" )
3098
3098
3099
3099
def test_functionalize_nonfunctional_output (self , device ):
0 commit comments