-
-
Notifications
You must be signed in to change notification settings - Fork 657
Added The BInary Expected_Calibration_Error (ECE) Metric #3132
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
base: master
Are you sure you want to change the base?
Changes from 3 commits
30360b2
82a647e
8d626dd
2233e13
1849bcf
b9f948a
71a951f
467aed1
21a21b5
abd806c
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
| Original file line number | Diff line number | Diff line change | ||||||||||||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| @@ -0,0 +1,57 @@ | ||||||||||||||||||||||||||||||||||||
| import torch | ||||||||||||||||||||||||||||||||||||
|
|
||||||||||||||||||||||||||||||||||||
| from ignite.exceptions import NotComputableError | ||||||||||||||||||||||||||||||||||||
| from ignite.metrics import Metric | ||||||||||||||||||||||||||||||||||||
|
|
||||||||||||||||||||||||||||||||||||
|
|
||||||||||||||||||||||||||||||||||||
| class ExpectedCalibrationError(Metric): | ||||||||||||||||||||||||||||||||||||
| def __init__(self, num_bins=10, device=None): | ||||||||||||||||||||||||||||||||||||
| super(ExpectedCalibrationError, self).__init__() | ||||||||||||||||||||||||||||||||||||
| self.num_bins = num_bins | ||||||||||||||||||||||||||||||||||||
| self.device = device | ||||||||||||||||||||||||||||||||||||
| self.reset() | ||||||||||||||||||||||||||||||||||||
|
|
||||||||||||||||||||||||||||||||||||
| def reset(self): | ||||||||||||||||||||||||||||||||||||
| self.confidences = torch.tensor([], device=self.device) | ||||||||||||||||||||||||||||||||||||
| self.corrects = torch.tensor([], device=self.device) | ||||||||||||||||||||||||||||||||||||
|
|
||||||||||||||||||||||||||||||||||||
| def update(self, output): | ||||||||||||||||||||||||||||||||||||
| y_pred, y = output | ||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||
| y_pred, y = output[0].detach(), output[1].detach() |
Outdated
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Let's use the following way to raise errors instead of assert:
if not (y_pred.dim() == 2 and y_pred.shape[1] == 2):
raise ValueError("This metric is for binary classification")To assert if the input is binary we were doing previously something like here:
ignite/ignite/metrics/accuracy.py
Lines 51 to 67 in 4dc4e04
| def _check_binary_multilabel_cases(self, output: Sequence[torch.Tensor]) -> None: | |
| y_pred, y = output | |
| if not torch.equal(y, y**2): | |
| raise ValueError("For binary cases, y must be comprised of 0's and 1's.") | |
| if not torch.equal(y_pred, y_pred**2): | |
| raise ValueError("For binary cases, y_pred must be comprised of 0's and 1's.") | |
| def _check_type(self, output: Sequence[torch.Tensor]) -> None: | |
| y_pred, y = output | |
| if y.ndimension() + 1 == y_pred.ndimension(): | |
| num_classes = y_pred.shape[1] | |
| if num_classes == 1: | |
| update_type = "binary" | |
| self._check_binary_multilabel_cases((y_pred, y)) |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
First, let's put it into
ignite/metrics/ExpectedCalibrationError.pyinstead ofignite/contrib/metrics/ExpectedCalibrationError.py