Skip to content
This repository was archived by the owner on Sep 10, 2025. It is now read-only.

Add check for rocminfo in the installation script to replace the nightly URL with the appropriate ROCm whl. #2050

Add check for rocminfo in the installation script to replace the nightly URL with the appropriate ROCm whl.

Add check for rocminfo in the installation script to replace the nightly URL with the appropriate ROCm whl. #2050

Workflow file for this run

name: Run parallel prefill
on:
pull_request:
push:
branches:
- main
workflow_dispatch:
jobs:
test-cuda:
uses: pytorch/test-infra/.github/workflows/linux_job.yml@main
with:
runner: linux.g5.4xlarge.nvidia.gpu
gpu-arch-type: cuda
gpu-arch-version: "12.1"
timeout: 60
script: |
echo "::group::Print machine info"
uname -a
echo "::endgroup::"
echo "::group::Install newer objcopy that supports --set-section-alignment"
yum install -y devtoolset-10-binutils
export PATH=/opt/rh/devtoolset-10/root/usr/bin/:$PATH
echo "::endgroup::"
echo "::group::Download checkpoints"
# Install requirements
./install/install_requirements.sh cuda
pip3 list
python3 -c 'import torch;print(f"torch: {torch.__version__, torch.version.git_version}")'
echo "::endgroup::"
echo "::group::Download checkpoints"
mkdir -p checkpoints/stories15M
pushd checkpoints/stories15M
wget https://huggingface.co/karpathy/tinyllamas/resolve/main/stories15M.pt
wget https://github.com/karpathy/llama2.c/raw/master/tokenizer.model
popd
echo "::endgroup::"
echo "::group::Run inference"
export MODEL_PATH=checkpoints/stories15M/stories15M.pt
export MODEL_NAME=stories15M
export MODEL_DIR=/tmp
for DTYPE in bfloat16 float16 float32; do
###################################################################
# group with different temperatures
python torchchat.py generate --checkpoint-path ${MODEL_PATH} --device cpu --dtype ${DTYPE} --temperature 0
python torchchat.py generate --checkpoint-path ${MODEL_PATH} --device cpu --dtype ${DTYPE} --temperature 0.9
python torchchat.py generate --checkpoint-path ${MODEL_PATH} --device cpu --dtype ${DTYPE} --temperature 1.0
python torchchat.py generate --checkpoint-path ${MODEL_PATH} --device cpu --dtype ${DTYPE} --top-k 100
python torchchat.py generate --checkpoint-path ${MODEL_PATH} --device cpu --dtype ${DTYPE} --top-k 200
python torchchat.py generate --checkpoint-path ${MODEL_PATH} --device cpu --dtype ${DTYPE} --top-k 500
###################################################################
# group with different temperatures and prefill, and compile
# and prefill compile
python torchchat.py generate --checkpoint-path ${MODEL_PATH} --device cpu --dtype ${DTYPE} --temperature 0 --compile --compile-prefill
python torchchat.py generate --checkpoint-path ${MODEL_PATH} --device cpu --dtype ${DTYPE} --temperature 0.9 --compile --compile-prefill
python torchchat.py generate --checkpoint-path ${MODEL_PATH} --device cpu --dtype ${DTYPE} --temperature 1.0 --compile --compile-prefill
python torchchat.py generate --checkpoint-path ${MODEL_PATH} --device cpu --dtype ${DTYPE} --top-k 100 --compile --compile-prefill
python torchchat.py generate --checkpoint-path ${MODEL_PATH} --device cpu --dtype ${DTYPE} --top-k 200 --compile --compile-prefill
python torchchat.py generate --checkpoint-path ${MODEL_PATH} --device cpu --dtype ${DTYPE} --top-k 500 --compile --compile-prefill
###################################################################
# group with different temperatures and sequential prefill
python torchchat.py generate --checkpoint-path ${MODEL_PATH} --device cpu --dtype ${DTYPE} --temperature 0 --sequential-prefill
python torchchat.py generate --checkpoint-path ${MODEL_PATH} --device cpu --dtype ${DTYPE} --temperature 0.9 --sequential-prefill
python torchchat.py generate --checkpoint-path ${MODEL_PATH} --device cpu --dtype ${DTYPE} --temperature 1.0 --sequential-prefill
python torchchat.py generate --checkpoint-path ${MODEL_PATH} --device cpu --dtype ${DTYPE} --top-k 100 --sequential-prefill
python torchchat.py generate --checkpoint-path ${MODEL_PATH} --device cpu --dtype ${DTYPE} --top-k 200 --sequential-prefill
python torchchat.py generate --checkpoint-path ${MODEL_PATH} --device cpu --dtype ${DTYPE} --top-k 500 --sequential-prefill
###################################################################
# group with different temperatures and prefill, and compile
python torchchat.py generate --checkpoint-path ${MODEL_PATH} --device cpu --dtype ${DTYPE} --temperature 0 --sequential-prefill --compile
python torchchat.py generate --checkpoint-path ${MODEL_PATH} --device cpu --dtype ${DTYPE} --temperature 0.9 --sequential-prefill --compile
python torchchat.py generate --checkpoint-path ${MODEL_PATH} --device cpu --dtype ${DTYPE} --temperature 1.0 --sequential-prefill --compile
python torchchat.py generate --checkpoint-path ${MODEL_PATH} --device cpu --dtype ${DTYPE} --top-k 100 --sequential-prefill --compile
python torchchat.py generate --checkpoint-path ${MODEL_PATH} --device cpu --dtype ${DTYPE} --top-k 200 --sequential-prefill --compile
python torchchat.py generate --checkpoint-path ${MODEL_PATH} --device cpu --dtype ${DTYPE} --top-k 500 --sequential-prefill --compile
done
echo "tests complete"
echo "******************************************"
echo "::endgroup::"