This repository was archived by the owner on Sep 10, 2025. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 248
Unify Input Generation for CLI and Openai API #1219
Merged
Merged
Changes from 5 commits
Commits
Show all changes
7 commits
Select commit
Hold shift + click to select a range
aa5fc54
support text-only input with llama3.2-11b
Gasoonjia cfeec04
Merge branch 'main' into text-only-11b
Gasoonjia c0c8033
Merge branch 'main' into text-only-11b
Gasoonjia fb0e457
unify model generation between openai api and cli
Gasoonjia 4e60a83
merge main
Gasoonjia 97950a7
Update typos
Jack-Khuu 5f08656
remove used arg
Gasoonjia File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
|
|
@@ -19,15 +19,15 @@ | |
|
|
||
| from PIL import Image | ||
|
|
||
| from torchtune.data import Message, padded_collate_tiled_images_and_mask | ||
|
|
||
| from torchtune.models.llama3_2_vision._model_builders import llama3_2_vision_transform | ||
|
|
||
| from torchchat.cli.download import is_model_downloaded, load_model_configs | ||
| from torchchat.generate import Generator, GeneratorArgs | ||
|
|
||
| from torchchat.utils.build_utils import device_sync | ||
|
|
||
| from torchtune.data import Message, padded_collate_tiled_images_and_mask | ||
|
|
||
| from torchtune.models.llama3_2_vision._model_builders import llama3_2_vision_transform | ||
|
|
||
|
|
||
| """Dataclasses defined around the objects used the OpenAI API Chat specification. | ||
|
|
||
|
|
@@ -296,79 +296,45 @@ def __init__(self, *args, **kwargs): | |
| f"{self.builder_args.device}_{self.builder_args.precision}" | ||
| ) | ||
|
|
||
| def _openai_messages_to_torchtune_messages( | ||
| self, messages: List[_AbstractMessage] | ||
| def _gen_model_inputs_from_openai_completion_request( | ||
| self, completion_request: CompletionRequest | ||
| ) -> List[Message]: | ||
| """Convert a list of OpenAI API messages to a list of TorchTune messages. | ||
| """Generate model inputs from an OpenAI completion request. | ||
|
|
||
| Args: | ||
| messages: A list of OpenAI API messages. | ||
| completion_request: Request object with prompt and other parameters. | ||
|
|
||
| Returns: | ||
| A list of Torchtune Messages. | ||
| Modle inputs. | ||
| """ | ||
| torchtune_messages = [] | ||
| messages = completion_request.messages | ||
|
|
||
| prompt = None | ||
| images = None | ||
|
|
||
| for message in messages: | ||
| torchtune_contents = [] | ||
| if isinstance(message["content"], list): | ||
| for content_dict in message["content"]: | ||
| converted_content = [] | ||
|
||
| if content_dict["type"] == "text": | ||
| converted_content.append( | ||
| {"type": "text", "content": content_dict["text"]} | ||
| ) | ||
| assert ( | ||
| prompt is None | ||
| ), "At most one text prompt is supported for each request" | ||
| prompt = content_dict["text"] | ||
| elif content_dict["type"] == "image_url": | ||
| assert ( | ||
| images is None | ||
| ), "At most one image is supported at the moment" | ||
|
|
||
| base64_decoded = base64.b64decode( | ||
| content_dict["image_url"].split(";base64,")[1] | ||
| ) | ||
| image = Image.open(BytesIO(base64_decoded)) | ||
| converted_content.append( | ||
| { | ||
| "type": "image", | ||
| "content": image, | ||
| } | ||
| content_dict["image_url"].split(";base64,")[1] | ||
| ) | ||
| torchtune_messages.append( | ||
| Message(role=message["role"], content=converted_content, eot=False) | ||
| ) | ||
| return torchtune_messages | ||
| images = [Image.open(BytesIO(base64_decoded))] | ||
|
|
||
| def _openai_messages_to_torchtune( | ||
| self, messages: List[_AbstractMessage] | ||
| ) -> List[Message]: | ||
| """Convert a list of OpenAI API messages to a list of TorchTune messages. | ||
| assert prompt is not None, "Text prompt must be specified in the request" | ||
|
|
||
| Args: | ||
| messages: A list of OpenAI API messages. | ||
|
|
||
| Returns: | ||
| A list of Torchtune Messages. | ||
| """ | ||
| torchtune_messages = [] | ||
| for message in messages: | ||
| torchtune_contents = [] | ||
| if isinstance(message["content"], list): | ||
| for content in message["content"]: | ||
| if isinstance(content, dict): | ||
| if content["type"] == "image_url": | ||
| torchtune_contents.append({"type": "image"}) | ||
| elif content["type"] == "image_file": | ||
| torchtune_contents.append({"type": "image"}) | ||
| elif content["type"] == "text": | ||
| torchtune_contents.append( | ||
| {"type": "text", "content": content["text"]} | ||
| ) | ||
| elif isinstance(content, str): | ||
| torchtune_contents.append({"type": "text", "text": content}) | ||
| else: | ||
| torchtune_contents.append( | ||
| {"type": "text", "content": message["content"]} | ||
| ) | ||
| torchtune_messages.append( | ||
| Message(role=message["role"], content=torchtune_contents, eot=False) | ||
| ) | ||
| torchtune_messages.append(Message(role="assistant", content="", eot=False)) | ||
| return torchtune_messages | ||
| return self._gen_model_inputs(prompt, images, completed_request.max_tokens) | ||
|
|
||
| def chunked_completion(self, completion_request: CompletionRequest): | ||
| """Handle a chat completion request and yield a chunked response. | ||
|
|
@@ -396,63 +362,13 @@ def chunked_completion(self, completion_request: CompletionRequest): | |
| # Initialize counters for chunk responses and encode the prompt. | ||
| id = str(uuid.uuid4()) | ||
|
|
||
| idx = 0 | ||
| images = [] | ||
|
|
||
| device_sync(device=self.builder_args.device) | ||
| for message in completion_request.messages: | ||
| contents = message["content"] | ||
| if isinstance(contents, list): | ||
| for content in message["content"]: | ||
| if content["type"] == "image_url": | ||
| base64_decoded = base64.b64decode( | ||
| content["image_url"].split(";base64,")[1] | ||
| ) | ||
| images.append(Image.open(BytesIO(base64_decoded))) | ||
| print("images:", len(images), flush=True) | ||
| if len(images) > 0: | ||
| transform = llama3_2_vision_transform( | ||
| str(self.tokenizer_args.tokenizer_path) | ||
| ) | ||
| torchtune_messages = self._openai_messages_to_torchtune_messages( | ||
| completion_request.messages | ||
| ) | ||
| data = transform( | ||
| {"images": images, "messages": torchtune_messages}, inference=True | ||
| ) | ||
| seq_len = len(data["tokens"]) | ||
| total_response_length = seq_len + completion_request.max_tokens | ||
| causal_mask = torch.tril( | ||
| torch.ones( | ||
| size=(total_response_length, total_response_length), | ||
| dtype=torch.bool, | ||
| ) | ||
| ) | ||
| input_pos = torch.arange(total_response_length) | ||
|
|
||
| with torch.no_grad(): | ||
| with torch.device(self.builder_args.device): | ||
| batch = padded_collate_tiled_images_and_mask([data], pad_direction="left", pad_max_images=1) | ||
| batch["encoder_input"]["images"] = batch["encoder_input"]["images"].to(self.builder_args.precision) | ||
| batch["causal_mask"] = causal_mask | ||
| batch["input_pos"] = input_pos[None, :seq_len] | ||
| batch["encoder_mask"] = batch["encoder_mask"][:, :seq_len] | ||
|
|
||
| #batch = padded_collate([data], self.builder_args.device) | ||
| encoded = batch["tokens"].view(-1) | ||
| else: | ||
| tokens = self.chat_formatter.encode_dialog_prompt( | ||
| dialog=[ | ||
| {"role": message["role"], "content": message["content"]} | ||
| for message in completion_request.messages | ||
| ] | ||
| ) | ||
| print("tokens:", self.tokenizer.decode(tokens), flush=True) | ||
| encoded = torch.tensor( | ||
| tokens, dtype=torch.int, device=self.builder_args.device | ||
| ) | ||
| batch = None | ||
|
|
||
| encoded, batch = self._gen_model_inputs_from_openai_completion_request( | ||
| completed_request | ||
| ) | ||
|
|
||
| idx = 0 | ||
| start_pos = 0 | ||
|
|
||
| generator_args = GeneratorArgs( | ||
|
|
||
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.