Skip to content
This repository was archived by the owner on Sep 10, 2025. It is now read-only.
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
28 changes: 12 additions & 16 deletions torchchat/generate.py
Original file line number Diff line number Diff line change
Expand Up @@ -24,6 +24,15 @@

from PIL import Image

# torchtune model definition dependencies
from torchtune.data import Message, padded_collate_tiled_images_and_mask

from torchtune.generation import sample as tune_sample
from torchtune.models.llama3 import llama3_tokenizer

from torchtune.models.llama3_2_vision._model_builders import llama3_2_vision_transform
from torchtune.training import set_default_dtype

from torchchat.cli.builder import (
_initialize_model,
_initialize_tokenizer,
Expand All @@ -34,15 +43,6 @@
from torchchat.utils.build_utils import device_sync, set_precision
from torchchat.utils.device_info import get_device_info

# torchtune model definition dependencies
from torchtune.data import Message, padded_collate_tiled_images_and_mask

from torchtune.generation import sample as tune_sample
from torchtune.models.llama3 import llama3_tokenizer

from torchtune.models.llama3_2_vision._model_builders import llama3_2_vision_transform
from torchtune.training import set_default_dtype


class _ChatFormatter(ABC):
def __init__(self, tokenizer):
Expand Down Expand Up @@ -1164,13 +1164,9 @@ def callback(x, *, done_generating=False):
print(
f"just-in-time compilation time (incl run time): {compilation_time:.2} seconds"
)
aggregate_metrics["tokens_per_sec_jit_compile"] = tokens_sec
# Don't continue here.... because we need to report and reset
# continue
else:
aggregate_metrics["tokens_per_sec"].append(tokens_sec)
aggregate_metrics["first_token_per_sec"].append(first_token_sec)
aggregate_metrics["next_tokens_per_sec"].append(next_tokens_sec)
aggregate_metrics["tokens_per_sec"].append(tokens_sec)
aggregate_metrics["first_token_per_sec"].append(first_token_sec)
aggregate_metrics["next_tokens_per_sec"].append(next_tokens_sec)

logging.info(
f"\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\
Expand Down
Loading