Skip to content
This repository was archived by the owner on Sep 10, 2025. It is now read-only.
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 3 additions & 3 deletions install/install_requirements.sh
Original file line number Diff line number Diff line change
Expand Up @@ -51,13 +51,13 @@ echo "Using pip executable: $PIP_EXECUTABLE"
# NOTE: If a newly-fetched version of the executorch repo changes the value of
# PYTORCH_NIGHTLY_VERSION, you should re-run this script to install the necessary
# package versions.
PYTORCH_NIGHTLY_VERSION=dev20250119
PYTORCH_NIGHTLY_VERSION=dev20250124

# Nightly version for torchvision
VISION_NIGHTLY_VERSION=dev20250119
VISION_NIGHTLY_VERSION=dev20250124

# Nightly version for torchtune
TUNE_NIGHTLY_VERSION=dev20250119
TUNE_NIGHTLY_VERSION=dev20250124

# The pip repository that hosts nightly torch packages. cpu by default.
# If cuda is available, based on presence of nvidia-smi, install the pytorch nightly
Expand Down
20 changes: 3 additions & 17 deletions torchchat/model.py
Original file line number Diff line number Diff line change
Expand Up @@ -657,7 +657,7 @@ def __init__(self, config: TransformerArgs) -> None:
self.layers[str(layer_id)] = TransformerBlock(config)

if config.stage_idx == config.n_stages - 1:
self.norm = RMSNorm(config.dim, eps=config.norm_eps)
self.norm = nn.RMSNorm(config.dim, eps=config.norm_eps)
self.output = nn.Linear(config.dim, config.vocab_size, bias=False)
if config.tie_word_embeddings:
self.output.weight = self.tok_embeddings.weight
Expand Down Expand Up @@ -751,8 +751,8 @@ def __init__(self, config: TransformerArgs) -> None:
super().__init__()
self.attention = Attention(config)
self.feed_forward = FeedForward(config)
self.ffn_norm = RMSNorm(config.dim, config.norm_eps)
self.attention_norm = RMSNorm(config.dim, config.norm_eps)
self.ffn_norm = nn.RMSNorm(config.dim, config.norm_eps)
self.attention_norm = nn.RMSNorm(config.dim, config.norm_eps)
# None for llama architecture, set for granite architectures
self.residual_multiplier = (
config.residual_multiplier
Expand Down Expand Up @@ -928,20 +928,6 @@ def forward(self, x: Tensor) -> Tensor:
return self.w2(F.silu(self.w1(x)) * self.w3(x))


class RMSNorm(nn.Module):
def __init__(self, dim: int, eps: float = 1e-5):
super().__init__()
self.eps = eps
self.weight = nn.Parameter(torch.ones(dim))

def _norm(self, x):
return x * torch.rsqrt(torch.mean(x * x, dim=-1, keepdim=True) + self.eps)

def forward(self, x: Tensor) -> Tensor:
output = self._norm(x.float()).type_as(x)
return output * self.weight


def apply_scaling(freqs: torch.Tensor, rope_scaling: Dict[str, Any]):
# Check for the presence of the required keys
required_keys = {
Expand Down
Loading