Skip to content

quickattach0-tech/DeepLearningProtocol

Repository files navigation

Deep Learning Protocol

A hierarchical multi-interface reasoning system with Data Loss Prevention (DLP) capabilities.

CI/CD Status License: MIT .NET


🎯 Key Features

  • Hierarchical Architecture — Multi-interface design with AbstractCore, State, Depth, and Aim layers
  • Data Loss Prevention — Detects meme/binary content and backs up states automatically
  • Interactive Menu — User-friendly CLI with 10-question FAQ system
  • Comprehensive Testing — 8 XUnit tests covering all core functionality
  • Full Documentation — Multiple guides for different user roles
  • CI/CD Automation — Multi-platform releases via GitHub Actions

📚 Documentation

Audience Resource Purpose
First-timers Getting Started Build, run, and understand the basics
Developers Architecture Guide System design and components
Security-minded DLP Guide Data protection deep dive
Testers Testing Guide Writing and running tests
Contributors Contributing Development workflow & standards
All Full Wiki Complete reference

🚀 Quick Start

Prerequisites

  • .NET 10.0 SDK or higher
  • Git (for cloning)

Build & Run

# Clone the repository
git clone https://github.com/quickattach0-tech/DeepLearningProtocol.git
cd DeepLearningProtocol

# Build
dotnet build

# Run
dotnet run --project DeepLearningProtocol/DeepLearningProtocol.csproj

# Test (8 tests pass ✅)
dotnet test

VS Code: Press Ctrl+Shift+B to run, F5 to debug.


🏗️ Architecture Overview

The protocol implements four core components:

Component Purpose Responsibility
AbstractCore Deepest reasoning layer Fundamental processing logic
IAimInterface Goal-directed processing Strategic objectives & targets
IDepthInterface Recursive hierarchical processing N-level depth control
IStateInterface State management Current state tracking & updates

Plus: DataLossPrevention (DLP) layer detects suspicious content and backs up states.


📦 Project Structure

DeepLearningProtocol/
├── DeepLearningProtocol/              Core protocol implementation
│   ├── Program.cs                     Main logic + DLP + Menu system
│   └── DeepLearningProtocol.csproj
├── DeepLearningProtocol.Tests/        Unit tests (8 tests, all passing)
├── docs/                              Comprehensive documentation
├── .github/workflows/dotnet.yml       CI/CD pipeline with multi-platform builds
├── .vscode/                           VS Code tasks & debug config
└── README.md                          This file

🧪 Features

Interactive Protocol Execution

  • Custom input questions
  • Goal-directed processing
  • Configurable depth levels (1-10)
  • DLP-protected state management

Data Loss Prevention (DLP)

Automatically detects and blocks:

  • Image-like content (.png, .jpg, base64)
  • Meme-related keywords
  • Suspicious binary payloads
  • State backups to ./.dlp_backups/

FAQ System

Browse 10 pre-written answers about:

  • How to use the protocol
  • Architecture details
  • DLP functionality
  • Customization options

🛠️ Development

Adding Features

# 1. Update Program.cs
# 2. Add tests to DeepLearningProtocol.Tests/DeepLearningProtocolTests.cs
# 3. Run tests
dotnet test

Debugging

Press F5 in VS Code for interactive debugging.


🔄 CI/CD Pipeline

GitHub Actions runs on every push:

  • ✅ Multi-platform builds (Linux, Windows, macOS)
  • ✅ Unit tests (8 tests)
  • ✅ Code coverage collection
  • ✅ Release artifact creation

See .github/workflows/dotnet.yml for details.


📋 FAQ

📋 FAQ

Q: What's the minimum to get started?
A: git clone, dotnet build, dotnet run. ~2 minutes total.

Q: How do I run tests?
A: dotnet test — 8 tests, all passing ✅

Q: Can I ask custom questions?
A: Yes! Select "Run Interactive Protocol" and enter your question, goal, and depth level.

Q: What if I paste meme content?
A: The DLP layer detects it, backs up your state, and blocks the update.

Q: How do I contribute?
A: See CONTRIBUTING.md for guidelines and workflow.

For more FAQ, see the full wiki.


🤝 Contributing

We welcome contributions! Please see CONTRIBUTING.md for:

  • Code style guidelines
  • Testing requirements
  • Pull request workflow
  • Commit message conventions

📄 License

This project is licensed under the MIT License — see LICENSE for details.


🔗 Links


Last Updated: December 18, 2025 | Maintained by: @quickattach0-tech

About

Here’s a complete, ready-to-use GitHub repository structure for the Deep Learning Protocol C# code you have.

Resources

License

Contributing

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages