Skip to content

Architecture Overview

Rahul S. Bhatt edited this page Feb 10, 2025 · 1 revision

Architecture Overview

System Architecture

The AI Analysis for LeetCode project follows a modular architecture designed for scalability and maintainability.

graph TD
    A[Client Browser] --> B[Flask Web Server]
    B --> C[Analytics Core]
    C --> D[Pattern Analyzer]
    C --> E[Skill Analyzer]
    C --> F[Learning Path Analyzer]
    B --> G[GraphQL Client]
    G --> H[LeetCode API]
    C --> I[Cache Layer]
    I --> J[(In-Memory Cache)]
Loading

Core Components

1. Web Server (api/app.py)

  • Flask-based web application
  • Handles HTTP requests and responses
  • Serves the web interface
  • Routes requests to appropriate analytics modules

2. Analytics Core (api/core/analytics/)

The analytics core consists of several specialized modules:

Pattern Analyzer (pattern_analyzer.py)

  • Analyzes problem-solving patterns
  • Identifies strengths and weaknesses
  • Tracks progress over time
  • Generates pattern-based insights

Skill Analyzer (skill_analyzer.py)

  • Evaluates technical skills
  • Maps problems to skill categories
  • Measures proficiency levels
  • Suggests skill improvement areas

Learning Path Analyzer (learning_path_analyzer.py)

  • Creates personalized learning paths
  • Recommends problems based on skill level
  • Adapts recommendations based on progress
  • Optimizes learning trajectory

3. Data Management

GraphQL Client (api/GQLQuery.py)

  • Manages LeetCode API interactions
  • Handles authentication
  • Implements rate limiting
  • Formats API responses

Data Formatter (api/data_formatter.py)

  • Transforms raw API data
  • Standardizes data structures
  • Prepares data for analysis
  • Handles data validation

Cache Layer (api/core/utils/cache.py)

  • Implements in-memory caching
  • Reduces API calls
  • Improves response times
  • Manages cache invalidation

Data Flow

  1. Request Flow
sequenceDiagram
    participant User
    participant Web Server
    participant Analytics Core
    participant LeetCode API
    
    User->>Web Server: Request Analysis
    Web Server->>Analytics Core: Process Request
    Analytics Core->>LeetCode API: Fetch Data
    LeetCode API-->>Analytics Core: Return Data
    Analytics Core->>Analytics Core: Analyze Data
    Analytics Core-->>Web Server: Return Results
    Web Server-->>User: Display Results
Loading
  1. Analysis Pipeline
graph LR
    A[Raw Data] --> B[Data Formatter]
    B --> C[Cache Layer]
    C --> D[Analytics Modules]
    D --> E[Results Generation]
    E --> F[Response Formatting]
Loading

Technical Stack

Backend

  • Python 3.8+
  • Flask web framework
  • GraphQL client
  • NumPy/Pandas for data processing
  • In-memory caching

Frontend

  • HTML/CSS templates
  • JavaScript for interactivity
  • Bootstrap for responsive design

Security Considerations

  1. API Security

    • Rate limiting implementation
    • Request validation
    • Error handling
  2. Data Protection

    • Secure data transmission
    • Cache expiration policies
    • No storage of sensitive data

Performance Optimization

  1. Caching Strategy

    • In-memory cache for frequent requests
    • Configurable cache duration
    • Smart cache invalidation
  2. Request Optimization

    • Batch API requests
    • Parallel processing where applicable
    • Response compression

Future Scalability

  1. Horizontal Scaling

    • Stateless application design
    • Containerization support
    • Load balancer ready
  2. Modular Design

    • Pluggable analytics modules
    • Extensible architecture
    • Easy integration of new features

Development Workflow

  1. Code Organization
ai-analysis-for-leetcode/
├── api/
│   ├── app.py
│   ├── GQLQuery.py
│   ├── data_formatter.py
│   └── core/
│       ├── analytics/
│       │   ├── pattern_analyzer.py
│       │   ├── skill_analyzer.py
│       │   └── learning_path_analyzer.py
│       └── utils/
│           └── cache.py
├── docs/
└── tests/
  1. Development Process
    • Feature branching
    • Code review requirements
    • Automated testing
    • Documentation updates