-
Notifications
You must be signed in to change notification settings - Fork 2
Architecture Overview
Rahul S. Bhatt edited this page Feb 10, 2025
·
1 revision
The AI Analysis for LeetCode project follows a modular architecture designed for scalability and maintainability.
graph TD
A[Client Browser] --> B[Flask Web Server]
B --> C[Analytics Core]
C --> D[Pattern Analyzer]
C --> E[Skill Analyzer]
C --> F[Learning Path Analyzer]
B --> G[GraphQL Client]
G --> H[LeetCode API]
C --> I[Cache Layer]
I --> J[(In-Memory Cache)]
- Flask-based web application
- Handles HTTP requests and responses
- Serves the web interface
- Routes requests to appropriate analytics modules
The analytics core consists of several specialized modules:
- Analyzes problem-solving patterns
- Identifies strengths and weaknesses
- Tracks progress over time
- Generates pattern-based insights
- Evaluates technical skills
- Maps problems to skill categories
- Measures proficiency levels
- Suggests skill improvement areas
- Creates personalized learning paths
- Recommends problems based on skill level
- Adapts recommendations based on progress
- Optimizes learning trajectory
- Manages LeetCode API interactions
- Handles authentication
- Implements rate limiting
- Formats API responses
- Transforms raw API data
- Standardizes data structures
- Prepares data for analysis
- Handles data validation
- Implements in-memory caching
- Reduces API calls
- Improves response times
- Manages cache invalidation
- Request Flow
sequenceDiagram
participant User
participant Web Server
participant Analytics Core
participant LeetCode API
User->>Web Server: Request Analysis
Web Server->>Analytics Core: Process Request
Analytics Core->>LeetCode API: Fetch Data
LeetCode API-->>Analytics Core: Return Data
Analytics Core->>Analytics Core: Analyze Data
Analytics Core-->>Web Server: Return Results
Web Server-->>User: Display Results
- Analysis Pipeline
graph LR
A[Raw Data] --> B[Data Formatter]
B --> C[Cache Layer]
C --> D[Analytics Modules]
D --> E[Results Generation]
E --> F[Response Formatting]
- Python 3.8+
- Flask web framework
- GraphQL client
- NumPy/Pandas for data processing
- In-memory caching
- HTML/CSS templates
- JavaScript for interactivity
- Bootstrap for responsive design
-
API Security
- Rate limiting implementation
- Request validation
- Error handling
-
Data Protection
- Secure data transmission
- Cache expiration policies
- No storage of sensitive data
-
Caching Strategy
- In-memory cache for frequent requests
- Configurable cache duration
- Smart cache invalidation
-
Request Optimization
- Batch API requests
- Parallel processing where applicable
- Response compression
-
Horizontal Scaling
- Stateless application design
- Containerization support
- Load balancer ready
-
Modular Design
- Pluggable analytics modules
- Extensible architecture
- Easy integration of new features
- Code Organization
ai-analysis-for-leetcode/
├── api/
│ ├── app.py
│ ├── GQLQuery.py
│ ├── data_formatter.py
│ └── core/
│ ├── analytics/
│ │ ├── pattern_analyzer.py
│ │ ├── skill_analyzer.py
│ │ └── learning_path_analyzer.py
│ └── utils/
│ └── cache.py
├── docs/
└── tests/
-
Development Process
- Feature branching
- Code review requirements
- Automated testing
- Documentation updates