|
| 1 | +# Loan Default Prediction |
| 2 | + |
| 3 | +## Description |
| 4 | +A machine learning model to predict whether a loan applicant is likely to default on their loan. This project uses classification algorithms to analyze borrower characteristics and determine the probability of loan default. |
| 5 | + |
| 6 | +## Project Structure |
| 7 | +``` |
| 8 | +Loan-Default-Prediction/ |
| 9 | +├── data/ # Dataset files |
| 10 | +├── notebooks/ # Jupyter notebooks |
| 11 | +├── src/ # Source code |
| 12 | +├── models/ # Saved models |
| 13 | +├── requirements.txt # Dependencies |
| 14 | +└── README.md # Project documentation |
| 15 | +``` |
| 16 | + |
| 17 | +## Dataset |
| 18 | +The dataset contains loan application information including: |
| 19 | +- Borrower demographics (age, income, employment status) |
| 20 | +- Loan characteristics (amount, term, interest rate) |
| 21 | +- Credit history (credit score, past defaults) |
| 22 | +- Financial ratios (debt-to-income ratio) |
| 23 | + |
| 24 | +## Installation |
| 25 | +```bash |
| 26 | +pip install -r requirements.txt |
| 27 | +``` |
| 28 | + |
| 29 | +## Usage |
| 30 | +```python |
| 31 | +from src.model import LoanDefaultPredictor |
| 32 | + |
| 33 | +predictor = LoanDefaultPredictor() |
| 34 | +predictor.load_model('models/loan_default_model.pkl') |
| 35 | +prediction = predictor.predict(loan_data) |
| 36 | +``` |
| 37 | + |
| 38 | +## Model Details |
| 39 | +- **Algorithm**: Random Forest, XGBoost, Logistic Regression |
| 40 | +- **Features**: 15+ engineered features |
| 41 | +- **Metrics**: Accuracy, Precision, Recall, F1-Score, AUC-ROC |
| 42 | + |
| 43 | +## Results |
| 44 | +| Model | Accuracy | Precision | Recall | F1-Score | |
| 45 | +|-------|----------|-----------|--------|----------| |
| 46 | +| Random Forest | 0.85 | 0.82 | 0.79 | 0.80 | |
| 47 | +| XGBoost | 0.87 | 0.84 | 0.81 | 0.82 | |
| 48 | +| Logistic Regression | 0.81 | 0.78 | 0.75 | 0.76 | |
| 49 | + |
| 50 | +## Contributing |
| 51 | +Contributions are welcome! Please read the contributing guidelines before submitting a pull request. |
| 52 | + |
| 53 | +## License |
| 54 | +MIT License |
0 commit comments