Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view

Large diffs are not rendered by default.

Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
69 changes: 69 additions & 0 deletions Classification Models/Market Trend Classification Model/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,69 @@
# 📈 Market Trend Classification Model

<p align="center">
<img src="https://raw.githubusercontent.com/alo7lika/machine-learning-repos/refs/heads/main/Classification%20Models/Market%20Trend%20Classification%20Model/MarketTrend%20Analytics%20-%20Classification%20Model.png" alt="Market Trend Classification Model" width="600"/>
</p>

## 📖 Overview
The Market Trend Classification Model aims to identify different market conditions by analyzing historical stock price data. This project classifies market regimes by utilizing advanced data analysis techniques to aid in informed trading decisions and strategy development.

## 📚 Table of Contents
- [🚀 Problem Statement](#-problem-statement)
- [💡 Proposed Solution](#-proposed-solution)
- [Key Components](#key-components)
- [📦 Installation & Usage](#-installation--usage)
- [⚙️ Alternatives Considered](#-alternatives-considered)
- [📊 Results](#-results)
- [🔍 Conclusion](#-conclusion)
- [🤝 Acknowledgments](#-acknowledgments)
- [📧 Contact](#-contact)

## 🚀 Problem Statement
Accurate Market Trend Classification Model is crucial for investors and traders. Identifying whether the market is in a bull, bear, or neutral phase can significantly influence trading strategies and risk management.

## 💡 Proposed Solution
This project employs clustering algorithms to categorize market regimes based on features derived from stock price movements.

### Key Components
| Component | Description |
|-------------------------|--------------------------------------------------------------|
| **Data Collection** | Historical stock data is sourced from Yahoo Finance. |
| **Data Preprocessing** | Calculating daily returns, moving averages, and volatility. |
| **Feature Engineering** | Normalizing data for effective clustering. |
| **Clustering** | K-Means clustering is used to classify market regimes. |
| **Model Validation** | Evaluating the effectiveness of detected regimes. |

## 📦 Installation & Usage
To get started, ensure you have Python and the following libraries installed:

| Library | Installation Command |
|------------------|------------------------------------------|
| **Pandas** | `pip install pandas` |
| **NumPy** | `pip install numpy` |
| **Matplotlib** | `pip install matplotlib` |
| **Scikit-learn** | `pip install scikit-learn` |
| **yfinance** | `pip install yfinance` |

## ⚙️ Alternatives Considered
Several alternative approaches were evaluated, including:

| Alternative Approach | Description |
|----------------------------|--------------------------------------------------|
| **Traditional Machine Learning** | Algorithms like SVM and k-NN were considered; effective for smaller datasets but struggled with complexity. |

## 📊 Results
The model aims to classify market regimes accurately, providing valuable insights for trading strategies.

## 🔍 Conclusion
This project demonstrates the significance of time series analysis and clustering techniques in financial market analysis. The identified regimes can enhance traders' and investors' decision-making processes.

## 🤝 Acknowledgments
- **Dataset:** Yahoo Finance
- **Frameworks:** Pandas, NumPy, Matplotlib, Scikit-learn, yfinance

## 📧 Contact
For any inquiries or contributions, feel free to reach out:

| Name | Email | GitHub |
|--------------------|-----------------------------|---------------------|
| Alolika Bhowmik | [email protected] | [alo7lika](https://github.com/alo7lika) |
571 changes: 571 additions & 0 deletions Prediction Models/ClusterLogic Model/ClusterLogic Model.ipynb

Large diffs are not rendered by default.

Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
201 changes: 201 additions & 0 deletions Prediction Models/ClusterLogic Model/Mall_Customers.csv
Original file line number Diff line number Diff line change
@@ -0,0 +1,201 @@
CustomerID,Genre,Age,Annual Income (k$),Spending Score (1-100)
0001,Male,19,15,39
0002,Male,21,15,81
0003,Female,20,16,6
0004,Female,23,16,77
0005,Female,31,17,40
0006,Female,22,17,76
0007,Female,35,18,6
0008,Female,23,18,94
0009,Male,64,19,3
0010,Female,30,19,72
0011,Male,67,19,14
0012,Female,35,19,99
0013,Female,58,20,15
0014,Female,24,20,77
0015,Male,37,20,13
0016,Male,22,20,79
0017,Female,35,21,35
0018,Male,20,21,66
0019,Male,52,23,29
0020,Female,35,23,98
0021,Male,35,24,35
0022,Male,25,24,73
0023,Female,46,25,5
0024,Male,31,25,73
0025,Female,54,28,14
0026,Male,29,28,82
0027,Female,45,28,32
0028,Male,35,28,61
0029,Female,40,29,31
0030,Female,23,29,87
0031,Male,60,30,4
0032,Female,21,30,73
0033,Male,53,33,4
0034,Male,18,33,92
0035,Female,49,33,14
0036,Female,21,33,81
0037,Female,42,34,17
0038,Female,30,34,73
0039,Female,36,37,26
0040,Female,20,37,75
0041,Female,65,38,35
0042,Male,24,38,92
0043,Male,48,39,36
0044,Female,31,39,61
0045,Female,49,39,28
0046,Female,24,39,65
0047,Female,50,40,55
0048,Female,27,40,47
0049,Female,29,40,42
0050,Female,31,40,42
0051,Female,49,42,52
0052,Male,33,42,60
0053,Female,31,43,54
0054,Male,59,43,60
0055,Female,50,43,45
0056,Male,47,43,41
0057,Female,51,44,50
0058,Male,69,44,46
0059,Female,27,46,51
0060,Male,53,46,46
0061,Male,70,46,56
0062,Male,19,46,55
0063,Female,67,47,52
0064,Female,54,47,59
0065,Male,63,48,51
0066,Male,18,48,59
0067,Female,43,48,50
0068,Female,68,48,48
0069,Male,19,48,59
0070,Female,32,48,47
0071,Male,70,49,55
0072,Female,47,49,42
0073,Female,60,50,49
0074,Female,60,50,56
0075,Male,59,54,47
0076,Male,26,54,54
0077,Female,45,54,53
0078,Male,40,54,48
0079,Female,23,54,52
0080,Female,49,54,42
0081,Male,57,54,51
0082,Male,38,54,55
0083,Male,67,54,41
0084,Female,46,54,44
0085,Female,21,54,57
0086,Male,48,54,46
0087,Female,55,57,58
0088,Female,22,57,55
0089,Female,34,58,60
0090,Female,50,58,46
0091,Female,68,59,55
0092,Male,18,59,41
0093,Male,48,60,49
0094,Female,40,60,40
0095,Female,32,60,42
0096,Male,24,60,52
0097,Female,47,60,47
0098,Female,27,60,50
0099,Male,48,61,42
0100,Male,20,61,49
0101,Female,23,62,41
0102,Female,49,62,48
0103,Male,67,62,59
0104,Male,26,62,55
0105,Male,49,62,56
0106,Female,21,62,42
0107,Female,66,63,50
0108,Male,54,63,46
0109,Male,68,63,43
0110,Male,66,63,48
0111,Male,65,63,52
0112,Female,19,63,54
0113,Female,38,64,42
0114,Male,19,64,46
0115,Female,18,65,48
0116,Female,19,65,50
0117,Female,63,65,43
0118,Female,49,65,59
0119,Female,51,67,43
0120,Female,50,67,57
0121,Male,27,67,56
0122,Female,38,67,40
0123,Female,40,69,58
0124,Male,39,69,91
0125,Female,23,70,29
0126,Female,31,70,77
0127,Male,43,71,35
0128,Male,40,71,95
0129,Male,59,71,11
0130,Male,38,71,75
0131,Male,47,71,9
0132,Male,39,71,75
0133,Female,25,72,34
0134,Female,31,72,71
0135,Male,20,73,5
0136,Female,29,73,88
0137,Female,44,73,7
0138,Male,32,73,73
0139,Male,19,74,10
0140,Female,35,74,72
0141,Female,57,75,5
0142,Male,32,75,93
0143,Female,28,76,40
0144,Female,32,76,87
0145,Male,25,77,12
0146,Male,28,77,97
0147,Male,48,77,36
0148,Female,32,77,74
0149,Female,34,78,22
0150,Male,34,78,90
0151,Male,43,78,17
0152,Male,39,78,88
0153,Female,44,78,20
0154,Female,38,78,76
0155,Female,47,78,16
0156,Female,27,78,89
0157,Male,37,78,1
0158,Female,30,78,78
0159,Male,34,78,1
0160,Female,30,78,73
0161,Female,56,79,35
0162,Female,29,79,83
0163,Male,19,81,5
0164,Female,31,81,93
0165,Male,50,85,26
0166,Female,36,85,75
0167,Male,42,86,20
0168,Female,33,86,95
0169,Female,36,87,27
0170,Male,32,87,63
0171,Male,40,87,13
0172,Male,28,87,75
0173,Male,36,87,10
0174,Male,36,87,92
0175,Female,52,88,13
0176,Female,30,88,86
0177,Male,58,88,15
0178,Male,27,88,69
0179,Male,59,93,14
0180,Male,35,93,90
0181,Female,37,97,32
0182,Female,32,97,86
0183,Male,46,98,15
0184,Female,29,98,88
0185,Female,41,99,39
0186,Male,30,99,97
0187,Female,54,101,24
0188,Male,28,101,68
0189,Female,41,103,17
0190,Female,36,103,85
0191,Female,34,103,23
0192,Female,32,103,69
0193,Male,33,113,8
0194,Female,38,113,91
0195,Female,47,120,16
0196,Female,35,120,79
0197,Female,45,126,28
0198,Male,32,126,74
0199,Male,32,137,18
0200,Male,30,137,83
108 changes: 108 additions & 0 deletions Prediction Models/ClusterLogic Model/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,108 @@
# 🛍️ ClusterLogic Model

<p align="center">
<img src="https://raw.githubusercontent.com/alo7lika/machine-learning-repos/refs/heads/main/Prediction%20Models/ClusterLogic%20Model/ClusterLogic%20Model.png" alt="Customer Clust Segmentation Tool" width="600"/>
</p>


## 📚 Table of Contents
1. [Overview](#-overview)
2. [Features](#-features)
3. [How It Works](#-how-it-works)
4. [Tech Stack](#-tech-stack)
5. [Installation](#-installation)
6. [Usage](#-usage)
7. [Visualizations](#-visualizations)
8. [Machine Learning Models](#-machine-learning-models)
9. [Goals](#-goals)
10. [License](#-license)
11. [Contact](#-contact)


## 📋 Overview
ClusterLogic Model is a powerful customer segmentation tool designed to categorize customers based on their purchasing behavior, preferences, and demographic characteristics. By leveraging advanced data analytics and machine learning techniques, this tool helps businesses:

- 📈 Enhance marketing strategies
- 🧠 Improve customer understanding
- ⚙️ Optimize resource allocation
- 🚀 Drive business growth
- 💡 Foster a data-driven culture

## 🔍 Features
- **Segmentation**: Classifies customers into distinct groups for targeted marketing.
- **Behavioral Insights**: Provides valuable insights into customer preferences and purchasing habits.
- **Visualization**: Interactive charts and graphs for easy interpretation of customer segments.
- **Advanced Metrics**: Incorporates KPIs to measure the impact of different segments on business growth.

## 🧑‍💻 How It Works
1. **Data Collection**: Input customer purchase history, preferences, and demographic data.
2. **Data Preprocessing**: Clean and preprocess the data for machine learning models.
3. **Modeling**: Apply clustering algorithms like K-Means or Hierarchical Clustering to identify customer groups.
4. **Evaluation**: Analyze the results using metrics like silhouette score or within-cluster sum of squares (WCSS).
5. **Visualization**: Visualize the segmentation results using intuitive dashboards.

## 🛠️ Tech Stack
- **Languages**: Python 🐍
- **Libraries**:
- pandas 📊
- numpy 🔢
- scikit-learn 📚
- matplotlib 📉
- seaborn 📈

## 🚀 Getting Started

### Prerequisites
- Python 3.8+
- Jupyter Notebook
- Required libraries in `requirements.txt`

### Installation
Clone this repository:
```bash
git clone https://github.com/yourusername/ClusterLogic.git
cd ClusterLogic
```
Install the necessary dependencies:

```bash
pip install -r requirements.txt
```
### Usage
Run the Jupyter notebook to explore the data and generate customer segments:

```bash
jupyter notebook notebooks/ClusterLogic_Model.ipynb
```
To run the segmentation pipeline as a script:

```bash
python scripts/segment_customers.py
```

## 📊 Visualizations
The tool provides insightful visualizations to help you understand customer clusters and trends, such as:

- 📉 **Purchase trends over time**
- 🧩 **Segmented customer behavior**
- 🗺️ **Demographic distribution maps**
- 🎯 **Targeted marketing groupings**

## 🧠 Machine Learning Models
ClusterLogic Model uses unsupervised learning techniques, primarily focusing on:

- **K-Means Clustering**: For grouping customers into meaningful clusters.
- **Hierarchical Clustering**: To provide more granular segmentation if needed.

## 🏆 Goals
- Improve customer retention and acquisition.
- Maximize marketing campaign efficiency.
- Tailor product recommendations to specific customer segments.

## 🛡️ License
This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.

## 💬 Contact
For more information or queries, feel free to contact the project maintainers at: [[email protected]]


Loading